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Abstract 

Credit scoring remains one of the most important subjects in financial risk management. Although the 

methods in this field have grown in sophistication, further improvements are necessary. These could 

translate into major gains for financial institutions and other companies that extend credit by diminishing 

the potential for losses in this process. This research seeks to compare statistical and artificial 

intelligence predictors in a credit risk analysis setting. In order to perform this comparison, a credit 

scoring experiment is conducted with a sample of companies that corresponds to the business-to-

business clients of Galp in 2016. 

This dataset contains a variety of financial information and other relevant data regarding these 

companies, which allows for the development of several distinct credit scoring models. Pre-processing 

procedures are established, namely in the form of a proper sampling technique to assure the balance 

of the sample. Additionally, multicollinearity in the dataset is assessed via an analysis of the variance 

inflation factors and the presence of outliers is addressed with a detection technique based on robust 

Mahalanobis distances. This phase of the research allows for non-robust models to perform better, 

namely the statistical models that would be particularly affected by these issues. 

Several alternative architectures and/or settings are examined for each category of predictors 

considered. Following these experimentations, the best performing models are selected to be included 

in the benchmarking study. The results obtained reveal that the best predictive performance was 

obtained by artificial intelligence methods, confirming previous findings in the academic literature. 

Keywords: credit risk, artificial intelligence, discriminant analysis, logistic regression, artificial neural 

networks, random forest. 
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Resumo 

O risco na concessão de crédito continua a ser um tópico de suprema importância na área da gestão 

do risco em finanças. Apesar dos métodos utilizados nesta área se terem tornado gradualmente mais 

sofisticados, existe ainda algum espaço para melhorias. Estes avanços podem-se traduzir em enormes 

ganhos para instituições financeiras e outras organizações que concedam crédito através da redução 

do potencial para perdas neste processo. Este trabalho de pesquisa procura comparar métodos 

estatísticos e de inteligência artificial num contexto de análise de risco de crédito. Com este intuito, é 

realizada uma experiência de credit scoring com uma amostra de empresas que correspondem aos 

clientes business-to-business da Galp para o ano de 2016. 

A amostra obtida contém uma variedade de informação financeira e de outros tipos a respeito destas 

empresas, possibilitando o desenvolvimento e implementação de diversos modelos. Os procedimentos 

de pré-processamento dos dados são estabelecidos, nomeadamente na forma de uma técnica de 

amostragem adequada para a obtenção de uma amostra equilibrada. Adicionalmente, problemas de 

multicolinearidade são estudados e a presença de valores discrepantes é abordada. Esta fase da 

pesquisa permite que modelos não-robustos a estas questões tenham desempenhos superiores, 

nomeadamente os métodos estatísticos que são tendencialmente mais afetados.  

Diversos modelos alternativos são examinados para cada um dos métodos de credit scoring 

considerados. Após esta fase de experimentação, os melhores modelos são selecionados para 

integrarem o estudo comparativo. Esta análise revela que o melhor desempenho é obtido pelos 

métodos de inteligência artificial, confirmando os resultados de outros estudos comparativos. 

Palavras-chave: risco de crédito, inteligência artificial, análise discriminante, regressão logística, redes 

neuronais artificiais, árvores de decisão. 
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1. Introduction 

1.1.   Contextualization of the Problem  

Companies acquire funds not only from specialized financial intermediaries but also from the respective 

suppliers (Fabbri & Menichini, 2010). This practice is denominated trade credit and occurs frequently in 

the business-to-business (B2B) market when buyers receive credit from suppliers in the form of 

merchandise and/or services. If credit is approved by a seller for a certain client, there is always the 

possibility that this client will not honor the agreement to repay the amount in question. On the other 

hand, if credit is denied, it is possible that a potentially profitable client was handed over to rival 

companies. Therefore, one must carefully weigh these two factors when deciding on how to proceed 

regarding credit decisions, since a poor evaluation can cause significant losses (Gouvêa & Bacconi, 

2007). 

Credit risk, in general, is a topic of the utmost importance in financial risk management, being a major 

source of concern for financial and banking institutions (Khashman, 2010). However, the strategies in 

place to manage credit risk have seldom been able to predict when non-compliance will occur with the 

desired efficacy, which leads to a rise in toxic credits (Batista, 2012). As companies face the possibility 

of going out of business if insufficient measures are taken to manage this risk, the history of developing 

models to ascertain the ability of debtors to repay the respective credits is extensive.  

In the last decades, quantitative methods to manage credit risk have grown in sophistication. The end-

goal is to separate good credit applicants from bad ones. The criterion used in this classification is the 

ability of the applicants to repay the full amount of the loan plus the interest. Usually, this is achieved by 

feeding a predictive model with past customer data, thus finding the relationships between the clients’ 

characteristics and the potential for default (Huang, Liu, & Ren, 2018). There is substantial research 

material on this topic, as only a small improvement in prediction accuracy may result in large gains in 

profitability (Kvamme, Sellereite, Aas, & Sjursen, 2018). Until recently, to build these credit scoring 

models, the sole solution was to employ statistical models. The linear discriminant analysis and logistic 

regression are among the statistical techniques widely used for this purpose (Baesens, Setiono, Mues, 

& Vanthienen, 2003).  

However, technological advances have allowed for enhanced computational capabilities, paving the 

way for new and more efficient techniques. Such is the case of artificial intelligence (AI) methods. There 

are numerous studies showing that machine learning tools like artificial neural networks (ANNs), 

decision trees (DTs) and support vector machines, present an opportunity to improve on the prediction 

accuracy of statistical models with regards to credit risk (Vellido, Lisboa, & Vaughan, 1999; Huang et 

al., 2004; Ong, Huang, & Tzeng, 2005).  

Despite significant developments in terms of newer classifiers, the literature on credit risk has not kept 

pace with the breakthroughs in predictive learning (Lessmann, Baesens, Seow, & Thomas, 2015; Jones, 

Johnstone, & Wilson, 2015). Indeed, more recent techniques such as random forests and generalized 

boosting have been explored by a limited number of studies, although some sources report them as 

superior to previous methods (Jones et al., 2015). It is therefore imperative to further study these new 
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Figure 1 - List of the steps to perform the research. 

techniques to understand how these compare to older and more established methods of credit scoring 

with respect to performance and applicability. 

1.2.    Thesis Goals and Scope 

The objective of this thesis is to complement the academic literature on credit risk analysis by comparing 

traditional methods for credit scoring with artificial intelligence alternatives. This research should help 

determine which techniques offer a superior prediction performance. It is known that the current 

literature is poor in terms of studies comparing different classifiers (Tsai & Wu, 2008), which only 

emphasizes the importance of the research to be conducted. As there are numerous statistical and AI 

methods used for the purposes of credit scoring, this dissertation focuses only on these specific 

techniques: discriminant analysis, logistic regression, artificial neural networks and random forests. The 

detailed explanation regarding why these methods were selected is presented in section 2.2., along with 

a brief overview of each of these models.   

In order to be able to benchmark these methods, this dissertation includes a credit scoring experiment. 

This practical component comprises the implementation of the different predictive models in the credit 

risk analysis problem faced by Galp when dealing with trade credit extended to its corporate clients. The 

dataset used as input in these predictive models corresponds to a selection of financial and non-financial 

indicators for the B2B clients of Galp in 2016. After feeding the models with this information, these make 

predictions on what businesses present a default risk in the following year of 2017. By comparing these 

predictions with the known outcomes of the companies, it is possible to proceed with the computation 

of several performance metrics to assess the correctness of each model. After these results have been 

obtained, conclusions are drawn regarding the suitability of statistical and AI approaches.  

1.3.    Research Methodology 

In order to solve the problem defined in section 2, there must be a methodological approach in place 

that assures the scientific rigor and completeness of the dissertation. Figure 1 lists the steps to be 

followed to reach an appropriate conclusion for the problem. 

 

 

 

 

 

 

 

 

 

Step 1
• Definition of the problem.

Step 2
• Review of the relevant literature.

Step 3

• Selection of the explanatory variables to be included in the dataset.

• Preprocessing of the sample.

Step 4

• Development of the predictive models.

• Modifying the parameters to optimize the models' results.

Step 5

• Comparison of the alternative models.

• Final conclusions.
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Step 1 regards the definition of the problem tackled in this thesis. In this stage, the crucial importance 

of credit risk analysis is stressed, while also providing an overview of the methods used. Additionally, 

the shortcomings of the most popular techniques in this area are detailed, along with the consequences 

of poor credit risk management.  

Step 2 includes a review of the relevant academic literature. This stage allows for an understanding of 

the state-of-the-art practices, serving as the theoretical basis for the research to be conducted 

subsequently. This review comprises an extensive analysis of the models’ structures and determines 

which performance measures ought to be used when evaluating the results.   

Step 3 encompasses the selection of the indicators to be included in the sample for the credit scoring 

experiment. Additionally, this stage addresses the preprocessing of the data, which ensures that the 

dataset is apt to be used as input in the statistical and artificial intelligence methods. This procedure 

includes an examination into potential multicollinearity problems, an analysis concerning the presence 

of outlier instances and the development of a conversion procedure to ensure the coding of categorical 

attributes as numerical ones. 

Step 4 includes the construction of various alternative models for each category of predictors considered 

in the scope of the research. By testing various settings and/or architectures, it is possible to discover 

which are the most advantageous in the problem at hand. The models are evaluated in terms of the 

respective predictive performances, which allows for the most suitable model of each category to be 

included in the final benchmarking. 

The objective of step 5 is to benchmark the quality of the predictions obtained with the discriminant 

analysis, logistic regression, artificial neural network (ANN) and random forest (RF) methods. In order 

to do this, the correctness of these techniques is assessed through various key performance indicators. 

There is also a review of the relevant issues regarding the development of these models. Finally, the 

consequences of this research to the credit risk analysis problem are stated, while also delineating any 

further work that may be done. 
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1.4.    Thesis Structure 

In order to define the structure of this dissertation, Table 1 displays the chapter list of this document, 

along with a brief description of the contents of these sections.  

Table 1 - Structure and contents of the thesis. 

Section Contents 

1.  Introduction Definition and proper contextualization of the problem tackled in the 

thesis. Listing of the research goals. Definition of the project’s scope 

and the research methodology pursued. 

2.  Problem Definition Characterization of the credit risk in the Portuguese market. Brief 

introduction of the models to be studied and their strengths and 

weaknesses. Description of the experimental setup to evaluate these 

models. 

3.  Theoretical Framework Review of the relevant academic literature concerning the statistical 

and AI methods to be tested. Analysis of the structure, assumptions 

and implementation of these techniques. Listing of the main 

performance indicators used in the evaluation of credit scoring models. 

4.  Input Data Collection, 

Analysis and Treatment 

Description of the method used to obtain the input data. Explanation 

of the logic behind the types of explanatory variables used and how 

these may be computed. Application of the proper pre-processing 

procedures regarding the sampling technique, multicollinearity issues 

and the presence of outliers in the data.  

5.  Model Development Characterization of the procedures employed in the selection of the 

independent variables in each model. Definition of the alternative 

architectures and/or settings evaluated for each method. Interpretation 

of the relevant parameters relating to the models. Presentation of the 

relevant performance indicators and selection of the best alternative 

for each category of predictor contemplated in the research. 

6.  Comparing AI and 

statistical methods 

Comparison of the final statistical and AI models in terms of the 

development process. Benchmarking of the various methods 

considering a selection of key performance indicators.  

7.  Conclusions and Further 

Work  

Definition of further work that may be done based on this research. 

Presentation of the conclusions reached. 
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2. Problem Definition 

2.1.   Trade Credit Risk in Portugal 

As this research concerns trade credit, understanding the level of financial solidity of the Portuguese 

companies is relevant to the ensuing analyses. When a corporation assesses the possibility to concede 

credit in a B2B deal, it is fundamental to evaluate the past financial performance of the applicant, as this 

is indicative of the probability of future non-compliance with payment. One should take into consideration 

that the risk of default may be higher in trade credit than in other forms of financing. In fact, more robust 

corporations tend to use relatively less trade credit in comparison with financially debilitated companies 

(Hill, Kelly, Preve, & Sarria-Allende, 2017). Potentially due to this factor, Jacobson and von Schedvin 

(2015) reported that the losses incurred by trade creditors are significantly higher than those of banks.  

Extensive academic research has examined the importance of financial statement ratios in the prediction 

of credit failure (Altman, 1968; Ohlson, 1980; Henry, Robinson, & van Greuning, 2011). The companies’ 

operating performance is a major determinant of the respective credit risk (Demerjian, 2007). Analyzing 

the annual statistics published by Banco de Portugal (BdP), it is notorious that a significant fraction of 

Portuguese companies are in financial distress and hence at a higher risk of default.  

Figure 2 contains a chart with the percentage of companies that fit in each category of financial distress. 

It should be noted that there is significant overlap between these categories, as is expected because 

these are not independent events. A company displaying one poor financial indicator has a greater 

probability to have other poor financial indicators.  

 

 

 

 

 

 

 

 

 

Analyzing the chart, it becomes clear that the fraction of companies with negative results is significant. 

Over 35% of all companies are not profitable, exhibiting negative net incomes. For almost 15% of all 

companies, the earnings before interest, tax, depreciation and amortization (EBITDA) are not enough 

to cover the financing expenses. These cases represent a risk in trade credit scenarios, as there is a 

high probability that these companies will not be capable to provide payment for any services and/or 

products provided.  
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Figure 2 - Portuguese companies displaying poor financial indicators in 2017 
(Source: BdP). 
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In order to further examine the potential for default of Portuguese companies, the records provided by 

the Ministry of Justice for new insolvency proceedings and revitalization processes were analyzed. 

These revitalization procedures have been introduced in several EU countries to attempt to save 

financially distressed, but viable businesses (Eidenmuller, 2018). The Portuguese legislation 

established the special revitalization process (SPR) for this purpose. This concept will prove especially 

important in the latter credit scoring experiment.   

Figure 3 displays the progression of the numbers of new insolvency proceedings and revitalization 

processes from 2014 to 2017, along with the total count of companies registered in Portugal for each of 

those years.  

 

 

 

 

 

 

 

 

Analyzing the information in Figure 3, one can conclude that only a small percentage of companies 

declare bankruptcy or enter revitalization processes each year. On average, these cases amount to just 

4.2% of the total number of Portuguese companies in the period considered. This value contrasts with 

the high percentage of businesses with poor financials that was previously discussed, but these findings 

are not necessarily contradictory.  

Taking into consideration the data utilized in this research, it was notorious that only a limited number 

of the companies displaying negative results end up applying for revitalization processes or declaring 

bankruptcy. A business may operate at a loss for several years and default on payments without any 

formal request for insolvency.  

Although the information presented so far reflects the reality of corporations in Portugal, there is the 

need to compare the characteristics of these companies with the ones of foreign equivalents. This will 

provide a point of reference, which is needed to assess the relative performance of Portuguese 

businesses. In order to make this comparison, the temporal evolution (2013-2016) of two relevant 

financial ratios, the shareholder equity ratio and return on equity (ROE), was analyzed. These indicators 
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Figure 3 - Evolution of the number of insolvencies and revitalization processes in comparison with 
the total number of Portuguese companies (Sources: BdP and the Portuguese ministry of Justice). 
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are particularly relevant, as both are found to be highly correlated with the company outcomes in the 

later stages of this research. 

The plot in Figure 4 displays the trajectory of the shareholder equity ratio for companies in Portugal, 

France, Italy, Germany and Austria. This ratio is computed by dividing the equity by the total assets of 

a company. It is a measure of financial autonomy and can be interpreted as how much capital the 

shareholders would receive if the corporation shut its doors. Observing the values for the Portuguese 

companies, these stand out as the worst performing in this selection, although there is a trend of 

convergence with most of the other countries. This means that Portuguese companies are highly 

leveraged in comparison with these European counterparts 

Figure 5 shows the evolution of a different indicator, the return on equity, taking into consideration the 

same selection of EU countries. This variable belongs to the profitability measures category of financial 

indicators. It essentially assesses how capable the companies are to generate returns according to the 

equity available. Analyzing the results of the Portuguese companies, it is clear again that these are 

among the worst performing. Hence, after observing both charts, one may say that Portuguese 

companies appear to be not only the most indebted ones but also among the worst prepared to meet 

the respective financial obligations. 
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Figure 4 - Shareholder equity ratio in companies from different European countries (Source: BdP). 

0%

2%

4%

6%

8%

10%

12%

2013 2014 2015 2016

Portugal

Austria

France

Italy

Germany

Figure 5 – Return on equity of companies from different European countries (Source: BdP). 



8 
 
  

What this means in terms of credit risk analysis is that any creditor is expected to be especially careful 

when pondering credit applications from Portuguese businesses. This is also a motivating factor to 

research new models or improve the current ones, in order to facilitate the concession of credit to robust 

companies and reduce the number of corporations not able to meet the respective financial obligations.  

2.2.    Methods for Credit Risk Analysis  

The linear discriminant analysis (LDA) model is among the first statistical techniques utilized for credit 

scoring (West, 2000). LDA had the advantage over previous techniques, such as ratio analysis, that it 

could consider multiple characteristics of the credit applicants, as well as the interactions between them 

(Altman, 1968). However, there are some limitations regarding its validity. It is dependent on stringent 

assumptions, namely that all variables must present a normal distribution and be mutually independent 

(Huang, Chen, Hsu, Chen & Wu, 2004; Sustersic, Mramor, & Zupan 2009). These conditions have been 

proven difficult to meet when dealing with real-world scenarios. 

Considering the limitations of the discriminant analysis, researchers started experimenting with logistic 

regression (LR) models in credit risk problems (Altman & Sabato, 2008). This technique offered some 

improvements over the LDA, namely that its output is equal to the probability of a given instance 

belonging to a certain category and that the results could be easily interpreted. Albeit these theoretical 

differences, studies demonstrate that the empirical results are similar in terms of classification accuracy 

(Lo, 1985; Altman & Sabato, 2008).   

These two techniques, discriminant analysis and logistic regression, are amongst the most commonly 

applied linear statistical tools in credit scoring (Pacelli & Azzollini, 2011). However, the significant 

differences between these methods may impact their respective applicability and the quality of the 

results achieved. Due to the dissimilarities between LDA and LR and the relative popularity of both 

methods, these techniques are selected to be studied and tested in this thesis, representing the 

statistical methods for credit scoring.  

Nevertheless, it should be stressed that these tools assume linear relationships between the models’ 

outputs and the corresponding explanatory variables. In many situations, that is not the case and the 

performance of such techniques may be severely hampered. 

Other methods have since been developed to deal with complex non-linear relationships. Most 

prominently, artificial neural networks, a machine learning technique that is now well-established as a 

credit scoring method. The potential of this technique is confirmed by comparative studies either 

showing this tool outperforming discriminant analysis (Khemakhem & Boujelbène, 2015; Wójcicka-

Wójtowicz & Piasecki, 2017) or suggesting the use of a hybrid model as the best alternative (Lee, Chiu, 

Lu, & Chen, 2002; Lai, Yu, Wang, & Zhou, 2006). Additionally, previous research demonstrates that 

ANNs handle particularly well datasets with noise and incorrect entries (Tollo, 2006; Angelini, di Tollo, 

Roli, 2008; Wójcicka-Wójtowicz & Piasecki, 2017). 

Artificial neural networks may be currently the most used individual classifier in credit scoring (Lessmann 

et al., 2015; Louzada, Ara, & Fernandes, 2016).  This means that other methods involving hybrid or 
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combined approaches may be more frequent, but ANNs are the most common technique in terms of 

stand-alone models. Therefore, this model has been deemed as a critical tool to be analyzed in this 

thesis.  

Despite the great promise of ANNs, there are some disadvantages that should be noted. The black-box 

nature of neural networks, which basically means that it is very difficult to interpret how the results are 

achieved (Abdou & Pointon, 2011), is a major flaw. There is also a propensity to become stuck in local 

minima (Pacelli & Azzollini, 2011), although this limitation is difficult to surpass with any type of model. 

This is due to the non-linear nature of the problem at hand, which makes the computation of global 

minima burdensome. Additionally, artificial neural networks display a limited ability to deal with large 

datasets, which means this technique becomes more time consuming to process the data (Abdou & 

Pointon, 2011).  

As mentioned in section 1.1., although the research on credit scoring is very extensive, it does not reflect 

recent advances in predictive learning. One of the most prominent AI approaches that has recently 

started being used in classification problems respects random forests. This technique has been explored 

by few studies, although some sources report it as superior to earlier methods (Jones et al., 2015). 

Hence, the random forest method is selected as a technique to be researched in this thesis because of 

both its potential and the lack of comparative studies including this type of model. 

2.3.    Experimental Setup 

In order to compare statistical and AI models in assessing credit risk, this project includes an experiment 

using a novel dataset to check which method achieves the best results in the prediction of defaults. The 

dataset fed to the models contains information about 1994 companies operating in Portugal during 2016. 

It consists of 24 financial and non-financial indicators for these corporations concerning the fiscal year 

(FY) of 2016, along with the financial status (insolvent, under special revitalization process or non-

compliant) of these businesses in 2017. This dataset lacks the values for some entries due mainly to 

lapses in the database, but some of the cases may be caused instead by computational errors in the 

calculation of some indicators (e.g. attempting to calculate a ratio by dividing a value by zero).  

This thesis should offer a comprehensive analysis of how these methods compare at predicting the 

default risk of these companies. Additionally, this research must determine the optimal architecture 

and/or parameters that allow each technique to reach the best results and if there are any shortcomings 

in implementing these solutions in a business setting.    

2.4.    Chapter Conclusions 

The analysis of the financial situation of the Portuguese companies stresses the importance of credit 

scoring in B2B trading. It was observed that a significant portion of companies display poor financial 

results, which is indicative of an increased risk of default.  

The credit scoring models included in the scope of this dissertation are diverse and display different 

strengths and weaknesses. Although AI predictors may achieve better results in terms of accuracy, this 

comes at the cost of increased complexity, which requires more computational power and leads to a 
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reduced interpretability of the results due to the black-box syndrome. These factors must be taken into 

consideration when assessing the potential of the models. 

The experiment conducted in this project with the sample of Galp’s B2B clients allows for a thorough 

comparison between the performances of statistical and artificial intelligence methods. This practical 

aspect of the dissertation makes the current research valuable and a significant contribution to the 

academic literature on credit scoring models.  
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3. Theoretical Framework 

3.1.    Linear Discriminant Analysis 

The linear discriminant analysis method has been in use for a long time now, ever since being introduced 

by Sir Ronald Fisher in 1936. Initially, it was mainly utilized in biological and behavioral sciences (Altman, 

1968). Researchers would use physical measurements of organisms as inputs of the LDA for taxonomic 

purposes. It was only later that this method began being applied to financial problems.  

The LDA may be defined as a statistical technique utilized to classify an observation into one of several 

a priori groupings depending on the observation’s individual characteristics (Altman, 1968). It should be 

stressed that each instance belongs to only one of the groups previously defined. It is one of the earliest 

statistical classifiers, sharing some characteristics with the regression analysis and the analysis of 

variance (ANOVA) methods.  

Assuming a certain feature vector 𝑋 containing values for 𝑠 variables, 𝑥1, … , 𝑥𝑠, there is an interest in 

knowing what linear function of these measurements best discriminates the groups in question (Fisher, 

1936). This function can be defined as: 

𝑋 =  𝜆1𝑥1 + ⋯ + 𝜆𝑠𝑥𝑠 

In this expression, 𝜆𝑖 represents the discriminant coefficient for explanatory variable 𝑖. The goal for the 

LDA is to estimate the values for these coefficients that maximize the differences between the groups 

as measured by a given objective function.  

 3.1.1.    F-ratio criterion 

The original method defined by Fisher in his pioneering paper sought to find the coefficients that 

maximized the ratio of the difference between the means of the variables to the standard deviations 

within groups (Fisher, 1936). This ratio become later known as the F-ratio in honor of the statistician. It 

can be obtained by computing the following expression: 

𝐹 =  
∑ 𝑁𝑔(�̅�𝑔 − �̅�)2𝐺

𝑔=1

∑ ∑ (𝑦𝑝𝑔 − �̅�𝑔)2
𝑁𝑔

𝑝=1
𝐺
𝑔=1

 

This formula assumes the following notation: 

𝐺 – Number of groups; 

𝑔 – Group g (g = 1, …, G); 

𝑁𝑔 – Number of instances in group g; 

𝑦𝑝𝑔 – Instance p in group g (p = 1, …, 𝑁𝑔); 

�̅�𝑔 – Group mean; 

�̅� – Overall sample mean. 

The numerator of expression (2) corresponds to the sums-of-squares between groups and the 

denominator to the within-groups sums-of-squares (Altman, 1968). This is equivalent to divide the 

(1) 

 

(5) 

 

(5) 

 

(5) 

(2) 

 

(5) 

 

(5) 
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explained variance observed in the dataset (the differences due to distinct group membership) by the 

unexplained variance in the dataset (the differences due to chance).   

In order to get a practical perspective of the F-ratio, it is a good exercise to observe what output 

distributions provide higher or lower values for this measure. Figures 6 and 7 display plots of possible 

probability density functions for the output of two discriminant functions. The curves in red correspond 

to instances belonging to category I and the ones in blue to instances belonging to category II. Analyzing 

the plots, both the positioning and the slope of the curves provide clues into the F-ratio which can be 

obtained for these two cases.  

Figure 6 displays the curves for two normal distributions with means 2 and 3 and a variance of 0.7. The 

fact that the means are close to each other and the high variance contribute to a significant intersection 

between the distributions. This means that it is difficult to distinguish which category the instances 

belong to by the respective features. There are significant portions of the two categories displaying the 

same characteristics, hence it is hard to classify them.  

 

 

 

Figure 6 - Plots of the probability density functions for pair 1. 

Figure 7 - Plots of the probability density functions for pair 2. 
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Figure 7 on the other hand, displays the curves for two normal distributions with means 2 and 4 and a 

variance of 0.5. Comparing with the previous case, one can observe the functions are steeper both 

going upwards and downwards and the peaks for the two distributions further apart. This means that 

there are less instances belonging to different categories displaying the same features. Considering 

expression (2), the numerator should be greater because of an increased distance between the means 

of the different groups and the denominator should be smaller due to a reduced variance within each 

group. Therefore, it is easier to discriminate between the two groups, which means the F-ratio for the 

second case will be greater than for the first. 

3.1.2.   Altman’s Z-score 

Once the coefficients have been computed to maximize the discriminant power of the function, it is 

possible to calculate the score for each observation in the sample and assign it to a certain group 

accordingly. This technique was first applied to credit scoring by Edward Altman in his 1968 paper 

“Financial Ratios, Discriminant Analysis and the Prediction of Corporate Bankruptcy”. This approach is 

designated by Altman’s Z-score and served as the basis for the future applications of discriminant 

analysis in credit scoring. Altman’s method implies assigning each instance to the group it resembles 

the most. The comparisons are measured by a chi-square value and classifications are made based 

upon the relative proximity of the instance’s score to the various group centroids (Altman,1968). 

It should be noted that there are other variants of the discriminant analysis, differing from the Z-score 

namely in the objective function that is utilized to measure the discriminant power of the possible 

coefficients. This matter may generate some ambiguity when defining this method, however, this report 

details the original method as described in the works of Fisher and Altman.  

3.2.    Logistic Regression 

The logistic regression (also known as logit model) is one of the most widespread statistical tools for 

classification problems in general (Ong, Huang, & Tzeng, 2005). The LR started being used early in the 

twentieth century, mostly in the area of the biological sciences. Much as the discriminant analysis, it is 

a technique utilized in problems with categorical dependent variables displaying linear relationships with 

the corresponding explanatory variables. Despite the similarities, it should be stressed that the logistic 

regression model does not assume the populations in classification problems to be normally distributed. 

Unlike the discriminant analysis, the LR can deal with various distribution functions (Press & Wilson, 

1978; Ong, Huang, & Tzeng, 2005), and is thus, arguably, a better option in credit scoring tasks. 

This technique may be applied to classification problems with a dichotomous outcome or ones displaying 

multiple classes. Assuming the case of a binary logistic regression that is used to determine if an event 

𝐸 will happen (e.g. company bankruptcy), then 𝜋(𝑥) may be defined as the probability of 𝐸 occurring 

given the n-dimensional input vector 𝑋. As there are only two possible outcomes, 1 - 𝜋(𝑥) is equal to the 

probability of the event E not happening. The odds ratio may then be obtained by computing the following 

expression: 

𝑂𝑑𝑑𝑠 𝑅𝑎𝑡𝑖𝑜 =
𝑃(𝐸|𝑋)

𝑃(�̅�|𝑋)
  (3) 

 

(4) 
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The natural logarithm of the odds ratio is equal to the logit of 𝜋(𝑥) and corresponds to the linear form of 

the logistic regression (Agresti, 2007). This leads to the subsequent mathematical formulation: 

𝑙𝑜𝑔𝑖𝑡(𝜋(𝑥)) = 𝑙𝑜𝑔
𝜋(𝑥)

1 −  𝜋(𝑥)
 =  𝛼 + 𝛽𝑋 

The logit transformation ensures the linearization of the probability estimates and guarantees that the 

output of a LR is always restricted between 0 and 1 (Batista, 2012). On the other hand, a linear 

regression could produce negative probability estimates, which constitutes a deficiency of that method. 

A different formulation of the logistic regression is usually obtained by relating the probability of a given 

event, 𝐸, happening, conditional on a vector 𝑋 of observed explanatory variables, to the vector 𝑋 (Press 

& Wilson, 1978). This corresponds to expression (5), which may be also obtained by manipulating the 

formulation (4).  

𝜋(𝑥) =  P(𝐸|𝑥) =  
1

1 + 𝑒−𝛼−𝛽𝑋
 

The output of this expression describes a sigmoid curve taking values between zero and one. After the 

parameter 𝛼 and the vector of coefficients 𝛽 are calculated, it may be used as a predictor. The maximum 

likelihood (ML) method that is commonly used in statistics can be applied to estimate these parameters. 

This technique may be described as having two steps. First, there is the definition of both the distribution 

function of the dependent variable and the functional form that relates it to the values of the explanatory 

variables (Allison, 2012). In the case of the LR, the dependent variable displays a binomial distribution 

and the expression (5) can explicit the relation between 𝑋 and the probability 𝜋(𝑥). The second step is 

to maximize the likelihood of achieving a correct prediction, usually by employing an iterative numerical 

method (Allison, 2012). 

The logistic regression has seen a rise in popularity in recent years, with more research focusing on the 

applications of this method in credit scoring problems (Louzada et al., 2016). This contrasts with the 

trend to favor more sophisticated alternatives, namely AI methods. The ease of interpretability and the 

accuracy of the results obtained by the LR may explain this phenomenon. 

 3.2.1   Input Variable Selection Procedures for the LR 

There are three techniques commonly used to define which input variables should be included when 

building a logistic regression model:  

• Forward selection;  

• Backward elimination; 

• Stepwise methods. 

In forward selection, the first step is to pick the best input variable at distinguishing between the 

dependent categories. Subsequently, other variables are added to obtain the sets of the two best 

variables, three best variables and so on, until there are no indicators left that meet the condition to be 
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considered as input (Batista, 2012). In backward elimination, the starting point is to include all the 

explanatory variables as input. Afterward, indicators are removed one by one according to a pre-defined 

criterium, until all the variables left satisfy the necessary conditions. Only the indicators with the most 

predictive potential should be left in the final set. 

Stepwise techniques are a combination of the previous two. These include criteria for the entry and 

removal of variables. Therefore, variables may be included in the set of inputs and also be excluded, 

which happens until the best set is determined. 

The criteria used to evaluate the predictive potential of the variables may be the respective significance 

levels, likelihood ratios, Wald statistics, etc. 

3.3.    Artificial Neural Networks 

An artificial neural network is an AI method that gets its name from its components which resemble 

biological neurons. Much in the same way as a biological neural structure modifies itself to perform 

cognitive tasks, this model adapts by changing its parameters in order to carry out a certain 

computational task (Angelini et al., 2008).  

This method was first introduced by Warren McCullock and Walter Pitts in 1943. They showed this type 

of network could, in theory, perform any arithmetic or logic function (Khemakhem & Boujelbène, 2015). 

Ever since, this tool has been used for several goals, usually pattern recognition, classification or 

forecasting (Wójcicka, 2017). Artificial neural networks started being studied as a possible credit risk 

predictor in the nineties (Tang et al., 2018) and since then have become a mainstream tool utilized by 

several financial institutions and other companies.  

Neural networks are composed of several artificial neurons, which can be regarded as processing units. 

The outline of the respective structure is provided in Figure 8. These elements are interconnected via 

synapses that convey values, with each one of these connections having an assigned weight. When a 

neuron performs a computation, the first step is to do a weighted sum of the inputs 𝑥𝑖𝑗 (this corresponds 

to the operation in the left-hand part of the ellipse in Figure 8), afterward, the result is used in the transfer 

function that will calculate the neuron’s output 𝑦𝑗. 

Figure 8 - Outline of an artificial neuron and its synapses. 
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Sigmoid, linear and step functions are common transfer functions (Angelini et al., 2008). These are 

plotted in Figure 9. There are no restrictions on the type of function to be used, but it is usually dependent 

on the type of ANN. The designer of the network should be careful as this choice will influence the quality 

of the results. 

The way neurons are connected depends on the type of ANN. When each neuron is connected to all 

the neurons in the following layer, the network is called fully connected. If the networks allow loops in 

the flow of data, then these are called recurrent (Angelini et al., 2008). On the other hand, the 

feedforward networks correspond to structures where the data always flows from the preceding layers 

to the ones ahead, with no values being fed back to earlier layers (Pacelli & Azzollini, 2011).   

Figure 10 shows an example of a quite simple feedforward type ANN with a minimum of layers. From 

left to right, the first layer is the input layer and its incoming synapses contain the original explanatory 

variables of the model. The response of this segment of the network is passed onto the hidden layers 

(in this example a single one for simplicity). These get their name from being in-between the inner and 

outer layers and come in an adjustable number. The output layer comes last, being composed by a 

single artificial neuron, element #7. After this neuron computes the result of the respective transfer 

function, the end-result y of the network is achieved.   

Figure 9 - Plots of a linear function (left), a sigmoid function (center) and a step function (right). 

Figure 10 - Structure of a simple feedforward ANN. 
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As previously stated, artificial neural networks are dynamic systems. This means that some parameters 

change as it learns and improves results. The network checks the input and output values, so it can 

change the weights of the links to reduce the difference between the current result and the target 

(Agatonovic-Kustrin & Beresford, 2000). Thus, for each new entry of values for the input variables and 

the corresponding output that is fed into the network, the ANN adapts by modifying its weights and 

hence improve the accuracy of its predictions. This phase corresponds to the training of the ANN. 

3.3.1.    Learning Mechanisms 

There are different types of learning mechanisms for neural networks (Angelini et al., 2008). These 

methods can be divided into three categories: 

• Supervised learning; 

• Unsupervised learning; 

• Reinforcement learning. 

Supervised learning consists in feeding an ANN with a training set which is composed of correct 

examples (Pacelli & Azzollini, 2011). Methods of this category are faster than the others because the 

weight adjustment is made directly through the error (Khemakhem & Boujelbène, 2015). This kind of 

learning procedure is used when the network must learn to generalize the given examples (Angelini et 

al., 2008).  

In unsupervised learning, the training set only contains unlabeled data (i.e. there are inputs, but no 

outcome to group them). It is commonly utilized to search for patterns in big data in tasks such as data 

mining (Angelini et al., 2008).  

Reinforcement learning, similarly to supervised learning, has a clear goal for the network (Reed & Marks, 

1999). However, it is not the error function to drive the weight updates. There is a system of bonuses 

and penalties that evaluates the output for the ANN and guides the values attributed to the weights. It is 

frequently used in models that must complete a sequence of actions. In these cases, the outcome is 

dependent on the sequence of steps and, as such, each step must be assessed taking into consideration 

the wider chain of steps (Angelini et al., 2008).   

  3.3.2.    Training, Validation and Testing Phases 

There are different stages in the learning process of an ANN. These stages correspond to the training, 

validation and testing phases. The training and validation occur simultaneously, whereas the testing 

only takes place after the other two have been completed. Each one of these steps requires a distinct 

fraction of the original dataset. Essentially, the original input dataset must be divided into three parts 

(training set, validation set and test set), each with a different purpose. Consequently, the training-

testing-validation ratio must be defined by the network designer. This parameter is extremely important 

because inadequate ratios do not allow for meaningful learning (Khashman, 2010). 

The training set, as the name foreshadows, will be used in the training procedure described in the 

previous section. As this phase starts and the output error decreases, the validation set serves to control 
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a phenomenon called over-fitting (Zhao et al., 2015). Over-fitting happens when the ANN begins to 

model noise in the training set. When modeling noise, although the accuracy rate is supposedly 

improving, this learning cannot be generalized for other data entries not part of the training set. As such, 

the predictive ability of the network is actually being degraded. In order to prevent this, with each iteration 

of the learning algorithm, the weights are only updated if this will mean a better success rate of the 

predictions in the validation set that is kept separate from the training. This procedure is commonly 

referred to as the early stopping technique (Kvamme et al., 2018). It serves as a backstop by ensuring 

that each new weight update truly betters the model and stops the training before the onset of over-

fitting.   

Finally, the goal of the testing set is to evaluate the predictive ability of the model. It serves as an 

independent way to check if the model generalizes well outside the sets used for training and validation. 

It serves as a final measurement of the quality of the ANN model. 

3.3.3.    Multilayer Perceptron (MLP) Neural Networks 

The MLP is the most frequently used ANN in credit risk assessment (West, 2000) and has been tested 

in numerous studies for this purpose. It is a type of fully connected feedforward artificial neural network. 

The architecture of such networks usually displays several layers, with the first being the input layer 

which serves no computational role. The sole purpose of this layer is to pass the input to the following 

layers (Gardner & Dorling, 1998).  

For the purpose of updating the weights in MLP networks, the most commonly used algorithm follows 

the backpropagation rule (Huang et al., 2018). Referred to as the backpropagation (BP) algorithm, it is 

a type of supervised learning model. It begins by initializing the weights with small random values (West, 

2000). Subsequently, the gradient (i.e. the vector of derivatives of the error with respect to the weights) 

is computed and the weights are modified accordingly, in the direction which reduces the overall error 

of the network.  

Table 2 shows the application of the BP algorithm by detailing the necessary steps. The term epoch is 

used to describe going through a full cycle (executing steps 2 through 5).  

Table 2 - List of steps for an epoch of the backpropagation algorithm. 

Step Procedure 

1st Step Initialize the weights with small random values. 

2nd Step Feed a set of input values to the network. 

3rd Step Propagate the values though the ANN to obtain a result. 

4th Step Calculate the difference between desired and network outputs. 

5th Step Propagate the error backward and calculate the gradient.   

6th Step Adjust the weights according to the gradient. 

7th Step Repeat steps 2-7 for the following input entries until the overall error is acceptable. 
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In order to present a mathematical formulation of the backpropagation algorithm, the following notation 

is considered: 

𝑥𝑘 – inputs for the network;  

𝑤𝑘𝑗  – weight for links between the input and hidden layer;  

𝑤𝑗𝑖 – weight for links between the hidden and output layer; 

𝐼𝑘 – activation function for the input layer; 

𝐻𝑗 – activation function for the hidden layer; 

𝑂𝑖 – activation function for the output layer; 

𝑇𝑖 – desired output; 

𝐸𝑟𝑟𝑜𝑟𝑖 – error of the output result (𝐸𝑟𝑟𝑜𝑟𝑖 = 𝑇𝑖 − 𝑂𝑖); 

𝜂 – learning rate.  

Most of these parameters are self-explanatory, except for the learning rate. This rate is set by the 

network designer and corresponds to the speed at which the weights are updated. It is important to 

carefully tune the learning rate, so the adjustment can occur smoothly and without big jumps in the 

weights’ values that can lead to instability.  

The formula for updating the weights for links between the hidden and output layer (assuming a given 

activation function f) is as follows: 

𝑤𝑗𝑖 (𝑡 + 1) =  𝑤𝑗𝑖 (𝑡) + 𝜂𝐻𝑗𝐸𝑟𝑟𝑜𝑟𝑖

𝜕𝑓(∑ 𝑤𝑗𝑖𝐻𝑗𝑗 )

𝜕𝑤𝑗𝑖(𝑡)
 

The expression for the weights concerning links between the input and hidden layers (assuming a given 

activation function f) is similar:  

𝑤𝑘𝑗(𝑡 + 1) =  𝑤𝑘𝑗(𝑡) + 𝜂𝐼𝑘

𝜕𝑓(∑ 𝑤𝑘𝑗𝐼𝑘𝑘 )

𝜕𝑤𝑘𝑗(𝑡)
∑ 𝑤𝑗𝑖

𝑖

𝐸𝑟𝑟𝑜𝑟𝑖

𝜕𝑓(∑ 𝑤𝑗𝑖𝐻𝑗𝑗 )

𝜕𝑤𝑗𝑖(𝑡)
 

3.3.4.    Radial Basis Function (RBF) Neural Networks 

RBF networks are another common type of feedforward ANN that has been studied thoroughly in the 

credit risk analysis field. This model is comparatively quicker to learn than MLP type networks, but slower 

in computing an output and more demanding in terms of memory (Wójcicka, 2017). When comparing 

RBF and MLP networks, it is easy to conclude that these display an analogous structure, however, there 

are a few distinctive features.  

Radial basis function ANNs are also composed of input, hidden and output layers. The first layer just 

carries the data directly to the hidden layer which is entirely composed of neurons with radial basis 

transfer functions, such as Gaussian functions (Ayala & Coelho, 2016). The output layer then performs 

a weighted linear combination of the results of these functions (West, 2000). 
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The outcome of a radial basis function is dependent on three parameters: the received input vector 𝑋, 

the center of the respective neuron 𝑐𝑗 and the spread 𝜎𝑗. The center corresponds to a point with as many 

dimensions as the input vector 𝑋 (i.e. one dimension for each explanatory variable). The function 

evaluates the distance between 𝑋 and 𝑐𝑗 (the Euclidean distance is usually considered) to assess the 

similarity of the two vectors. The spread is set to control the smoothness of the drop seen in the function 

for greater distances. For each neuron j, assuming a Gaussian radial basis function as the transfer 

function, the output will be: 

𝜑𝑗(𝑋) = exp (−
‖𝑋 − 𝑐𝑗‖

2

2𝜎𝑗
2 ) 

The training that RBF networks undergo allows for the determination of the appropriate number of 

hidden layers and also the best centers and widths for each hidden neuron (Chen, Wang, Liu, & Wu, 

2018). These parameters will be the ones that allow for a minimization of the overall error of the 

network’s output. This output may be computed by the following expression: 

𝑌(𝑋) =  ∑ 𝑤𝑗exp (−
‖𝑋 − 𝑐𝑗‖

2

2𝜎𝑗
2 )

𝑗

 

The estimation of the centers can be done via a clustering algorithm, as these are usually easy to apply 

and offer robust results (Ríha, 2016). The k-means clustering, for example, is one of the common and 

intuitive methods of this type. This algorithm considers a set of initial centers and then iteratively changes 

the centers to minimize the total within-cluster variance (Hastie, Tibshirani, & Friedman, 2009). All the 

input data points are attributed to the closest center, which effectively is dividing the data into separate 

subsets. Then each center is recalculated to correspond to the vector of the means for the features of 

the data points composing the respective subset.  

After obtaining these parameters, a possible strategy regarding the spreads 𝜎𝑗  is to define them as the 

average distance between the respective center and the two closest neighboring centers. This is done 

in order to minimize any gaps or overlaps between clusters (West, 2000). 

The remaining step in the training phase of RBF networks is to determine the optimal values for the 

weights of each link in-between layers. This can be achieved through the least-squares method for 

example.  

3.4.    Decision Trees 

A sole decision tree (DT) model is a weak classifier for the purposes of credit scoring. However, DTs 

form the building block of the random forests’ structure, being therefore imperative at this point to clarify 

how this method works.  
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A DT is composed of multiple pathways originating from a common starting point and ending at the final 

nodes, also called leaves. These pathways present several nodes, which function as branching or 

splitting points. Each instance in the data that passes through a node is assigned a path according to 

some pre-established criterion (e.g. Total Assets > 100 000 €), being ultimately directed to a certain 

leave and corresponding output. An example of a decision tree is provided in Figure 11. 

There are different algorithms to guide the construction of decision trees. These usually fall into three 

categories (Louzada et al., 2016): Chi-square automatic interaction detectors (CHAIDs), Classification 

and regression trees (CARTs) and C5.0/C4.5 decision trees. 

The Chi-square automatic interaction detector (CHAID) method was introduced by G. Kass in 1980 as 

an improvement over the automatic interaction detector (AID) technique (van Diepen & Franses, 2006). 

The first stage of the algorithm is to discover the best split for each predictor and then select the one 

that is most advantageous overall. Subsequently, the data is split according to the chosen predictor and 

the subgroups present in the tree are re-analyzed independently, in order to produce further subdivisions 

for analysis (Kass, 1980). The significance level tests performed in this algorithm correspond to chi-

squared tests, hence the name of the method. CHAID may be used for prediction and classification 

purposes. 

The Classification and regression tree (CART) methodology was first presented by Breiman, Freidman, 

Olshen and Stone in their paper “Classification and Regression Trees” in 1984 (Timofeev, 2004). As 

well as CHAID, this method evolved from the original automatic interaction technique. The partitioning 

procedure of this algorithm is based on the Gini index. CARTs may be used for classification and 

regression purposes. 

The C5.0 and C4.5 methods were developed by R. Quinlan, with C5.0 being a more recent technique 

based on the C4.5 algorithm. These algorithms are used mainly for classification purposes and work by 

splitting the data according to the entropy of the partitions. Entropy essentially measures the purity or 

homogeneity of the data segments and may be computed with the following expression: 

𝐸𝑛𝑡𝑟𝑜𝑝𝑦(𝑆) =  ∑ −𝑝𝑖 log2(𝑝𝑖)

𝑐

𝑖=1

 

 

Figure 11 - Example of a decision tree used for a rudimentary credit scoring. 
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In this formula, the following notation is considered: 

𝑆 – Data segment or partition; 

𝑖 – Category index; 

𝑝𝑖 – Fraction of instances in a segment that belongs to category i; 

𝑐 – Total number of categories. 

If the partitioning of the data were to perfectly separate the different categories, then each data segment 

would be assigned a fraction of 1 for a certain category, amounting to a total entropy of zero. In this 

case, each segment would be perfectly homogenous, displaying instances for a single category. If the 

partitioning is not perfect, then the entropy value increases, reaching one for the case of maximum 

chaos. 

Regardless of the purpose or type of decision tree, it is important to decide whether to allow it to grow 

to its full extent or, on the other hand, limit its size. The procedure of limiting the size of decision trees 

is called pruning. This procedure is desirable because it helps prevent overfitting (Bradford, Kunz, 

Kohavi, Brunk, & Brodley, 1998). The pruning approach consists of breaking ties in a decision tree’s 

structure until one finds the model with the best performance on previously unobserved cases (Breiman, 

Friedman, Olshen, & Stone, 1984; Quinlan, 1993). Therefore, the key advantage of this procedure is 

that it allows the model to distinguish the noisy instances from the predictive patterns present in the data 

(Frank, 2000).   

Additionally, it should be noted that decision trees are generally robust against the presence of outliers 

and missing data, as the node splitting seldom occurs at extreme values (Batista, 2012). DTs can also 

use a certain indicator repeatedly in the respective pathways, taking into consideration the interactions 

between different predictors (Espahbodi & Espahbodi, 2003). These characteristics represent major 

strengths of the DTs, but as it will be discussed in the next section, there is still room for improvement 

by considering several different decision trees, instead of a single DT. The random forest method 

capitalizes on the predictive power of several DTs, while averaging out any potential deficiencies of 

individual decision trees. 

3.5.  Random Forests 

A random forest is an AI technique that belongs to the category of homogenous ensemble classifiers. It 

is an ensemble method because it relies on the output of multiple individual classifiers. As all these 

classifiers are of the same type, it is then defined as a homogenous ensemble. A random forest may be 

defined as a collection of decision trees. 

The aggregation of the various outputs obtained into a single outcome (i.e. the random forest’s 

prediction) may be done by averaging over all the output values when predicting a numerical outcome 

or by performing a vote when predicting a class (Breiman, 1996). There is much evidence that this 
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procedure of model combination can lead to increased prediction accuracy (Paleologo, Elisseeff, & 

Antonini, 2010; Finlay, 2011; Lessmann et al., 2015).  

In the context of classification problems, a random forest is analogous to a voting committee. Each 

decision tree reaches a prediction or classification and then the results of all trees are checked to find 

what is the output of the majority. Therefore, it is implied in this logic that the decision trees reach 

different results and consequently display distinct structures. A fundamental challenge when building a 

RF is thus to ensure the diversity of the decision trees.  

The diversification of decision trees is achieved via two mechanisms:  

• Bootstrap aggregating (bagging): this procedure allows for each tree to use a different sample 

as input without partitioning the data. These replicate datasets, each consisting of a given 

number of cases, are drawn at random, but with replacement, from the original dataset 

(Breiman, 1996). This means that an instance may be sampled multiple times or not be present 

at all in the data used to feed a given decision tree; 

• Random feature selection: this mechanism dictates that each node is assigned a random subset 

of predictors that it may use in the node splitting procedure. Therefore, any explanatory 

variables that are not included in this subset may not be used in the splitting. This random 

selection of features at each node decreases the correlation between the decision trees, 

causing a reduction in the random forest error rate (Bryll, Gutierrez-Osuna, & Quek, 2003; 

Archer & Kimes, 2008).  

Random feature selection has been demonstrated to perform better than bagging alone (Dietterich, 

2000), namely in problems with several redundant features (Archer & Kimes, 2008). This strategy has 

also proven to perform well in comparison to other predictive methods, including discriminant analysis 

and neural networks, helping prevent the overfitting phenomenon. 

When implementing this type of model, certain parameters must be defined in advance that will shape 

how the random forest is constructed. These are the total number of trees and the number of attributes 

that may be used to grow each tree (Brown & Mues, 2012).  After the random forest is constructed, its 

results are not easily interpretable, which is inconvenient when it is critical to understand the interactions 

between the variables of the problem (Breiman, 2001). The black-box nature of this method contrasts 

with the ease of interpretation of decision trees, being a downside of its inherent increased complexity. 

3.6.    Key Performance Indicators (KPIs) in Credit Scoring 

There are several metrics that may be used when comparing the performance of alternative predictive 

models (Addo, Guegan, & Hassani, 2018). The key performance indicators selected to evaluate the 

models in this research were picked by their popularity in the academic literature and ease of 

interpretation. A brief explanation is provided for each of these indicators in the following sub-sections. 

 

 



24 
 
  

3.6.1.   Percentage Correctly Classified (PCC) 

In general, the percentage of correctly classified instances is the most common quantitative measure 

utilized in the evaluation of the predictive models’ results. This statistic can be obtained by the following 

expression: 

𝑃𝐶𝐶 =  
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑜𝑟𝑟𝑒𝑐𝑡 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠 𝑝𝑒𝑟𝑓𝑜𝑟𝑚𝑒𝑑
 

This metric corresponds to the accuracy of the models and is the most intuitive of all the key performance 

indicators selected. 

3.6.2.   Error Types, Sensitivity and Specificity 

Other important measures include the type I and type II error rates used in statistical hypothesis testing. 

In order to understand these errors, first it is beneficial to define a null hypothesis. Assuming the null 

hypothesis is that the company applying for credit will not default next year, then these errors are defined 

as: 

• Type I error: An incorrect rejection of the null hypothesis. The model predicted that the company 

would default, when in fact this did not happen. This is commonly referred to as a false positive 

(FP); 

• Type II error: An incorrect acceptance of the null hypothesis as true. The model predicted that 

the company would not default, but it defaulted the following year. This is commonly referred to 

as a false negative (FN). 

Additionally, true positives (TP) and true negatives (TN) correspond to correctly rejecting and correctly 

accepting the null hypothesis, respectively. Considering this information, as defined by Huang et al. 

(2018), the average error rates are computed by: 

𝑇𝑦𝑝𝑒 𝐼 𝑒𝑟𝑟𝑜𝑟 𝑟𝑎𝑡𝑒 =  
𝐹𝑃

𝑇𝑁 + 𝐹𝑃
 

𝑇𝑦𝑝𝑒 𝐼𝐼 𝑒𝑟𝑟𝑜𝑟 𝑟𝑎𝑡𝑒 =  
𝐹𝑁

𝑇𝑃 + 𝐹𝑁
 

These statistics are important in order to determine what type of error the models are most prone to. 

Generally, type II errors are considered more damaging to creditors than the type I errors (Huang et al., 

2018), because the total amount of the credit may be lost in such situations. Type I errors do not mean 

a financial loss, just an opportunity loss because a profitable client was turned away. In spite of this, the 

majority of studies on credit risk analysis do not use these metrics to evaluate the performance of the 

respective models, which constitutes a major flaw in the literature on this topic (Tsai & Wu, 2008). 
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In alternative to these rates, one can assess the performance of a credit scoring model through the 

sensitivity and specificity. These parameters correspond to the true positives rate and true negatives 

rate, respectively (Batista, 2012). The formulas for the computation of these rates are found below. 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 (𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 𝑅𝑎𝑡𝑒) =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 (𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠 𝑅𝑎𝑡𝑒) =  
𝑇𝑁

𝑇𝑁 + 𝐹𝑃
 

3.6.3.   Area under the ROC Curve (AUC) 

The AUC is a commonly used performance indicator to benchmark different credit scoring models. In 

order to understand this concept, it is fundamental to define the receiver operating characteristic (ROC) 

curve. The ROC curve is obtained by plotting, for each classification threshold, the rate of true positives 

against the rate of false positives (Swets, Dawes, & Monahan, 2000).  

The threshold in these models corresponds to the cutoff value separating the categorical outcomes, 

which means that, assuming a binary classifier, outputs under a given threshold indicate a certain 

category and the ones over it indicate the other category. 

Figure 12 displays how distinct threshold levels influence the results obtained with a predictive model. 

Assuming the red and blue curves to be representative of the probability distributions of the model’s 

outputs for classes “Bad” and “Good”, respectively, then it is clear there is a tradeoff between type I and 

type II errors. For threshold 1, there is a high risk of predicting “Good”, when in fact the correct class 

was “Bad”, and for threshold 2, there is a high risk of predicting “Bad” incorrectly, because the case 

belonged to the ”Good” class. The optimal cutoff value will depend on the problem at hand, namely on 

which type of error is most detrimental. 

 

Figure 13 displays an example of a ROC curve (in red), which may be obtained by checking, for each 

possible threshold, what are the corresponding true positive and true negative rates. Using these values 

as coordinates in a graphic, one can plot the ROC curve. The area under this curve corresponds to the 

AUC. It provides a way to understand how well a given model differentiates between the distinct data 

Figure 12 - Examples of different threshold levels. 
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classes, regardless of the threshold selected. This is a fundamental concern when comparing various 

models, as different cutoff values may be established according to the aversion to type I and type II 

errors. 

 

The blue line in Figure 13 corresponds to the results of a prediction with chance accuracy. This 

represents the case of a perfectly random classifier, which scores an AUC of 0.5 (Hand, 2009). In this 

figure, it is noticeable that the area under the blue line corresponds to 50% of the total. Better classifiers 

will obtain ROC curves that bow more to the left, denoting superior accuracy. The Gini coefficient, 

another commonly used performance indicator in benchmarking studies of credit scoring methods, is a 

chance standardized alternative of the AUC. According to Anderson (2007), the relationship between 

the AUC and the Gini coefficient may be expressed by the following expression: 

𝐴𝑈𝐶 ≈  
𝐺𝑖𝑛𝑖 𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 + 1

2
 

It is also relevant to explain an alternative interpretation of the AUC. Assuming, for instance, that bad 

companies are coded as 0 and good companies as 1, then it may be said that the AUC equals the 

probability that a random bad company will obtain an output in a credit scoring model lower than a 

random good company.  

 

 

Figure 13 - Example of a ROC curve along with a line representing 
chance accuracy (adapted from Swets et al., 2000). 
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3.6.4.   Limitations of the Performance Indicators and Alternatives 

Although the PCC and AUC are the most widely used performance indicators for evaluating credit 

scoring models, there are several other measures that may be used. Furthermore, some authors have 

questioned the suitability of the AUC measure to compare different classifiers (e.g. Hand, 2009). It has 

been argued that the AUC assumes different cost distributions for different classifiers (Lessmann et al., 

2015). This distribution of misclassification costs should be dependent on the classification problem, not 

on the type of classifier (Hand & Anagnostopoulos, 2013). Alternatives such as the H-measure have 

been proposed to address the limitations of the AUC. 

However, Lessmann et al. (2015) have suggested that the classifier rankings obtained by using the AUC 

and the H-measure do not differ much. The empirical results for these two measures display a 

correlation value of 0.93. Several other popular performance indicators display pairwise correlations 

values of around 0.9, pointing to a high similarity between the classifier ranks obtained using these 

scores. These results suggest that a limited number of performance indicators is enough to compare 

different classifier methods, while also indicating that the AUC limitations presented by Hand (2009) do 

not cause major discrepancies between the ranks obtained with this measure and with other alternative 

indicators. 

As the AUC remains the most popular performance indicator in the credit scoring literature and its 

potential shortcomings do not seem to produce a major impact in the ranks obtained, it was deemed 

appropriate to employ it to evaluate the predictive models of this research. Furthermore, this choice 

allows for the comparison between these models and others previously applied in the academic 

literature. The high correlation observed between the ranks obtained with the different performance 

indicators, as described by Lessmann et al. (2015), justifies the choice to only use a reduced number of 

these measures in this research.  

The PCC was included in this selection of performance indicators as it provides a more intuitive global 

view of the accuracy of the models. The sensitivity and specificity of the results are also relevant 

indicators, especially in cases of unbalanced datasets in which the PCC and AUC measures may mask 

a propensity of the models to a certain error type. These two measures will, therefore, allow to 

differentiate between type I and type II errors, which is of paramount importance. 

3.7.   Chapter Conclusions 

This chapter allowed for the analysis of the main credit scoring techniques, which in turn led to a 

comprehension of the necessary concepts for the development of such models. Furthermore, the study 

of the performance indicators used in credit scoring permitted the definition of the appropriate measures 

to be used in the later stages of the research. 

By examining the academic literature relating to the linear discriminant analysis, it became clear that 

this method displays several variants. However, all these versions suffer from some shortcomings that 

ultimately led to the disuse of this technique. During the early stages of the research, it was noticeable 

that the recent credit scoring research articles seldom discussed the application of the discriminant 
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analysis method. This perception was subsequently confirmed by checking benchmarking studies that 

pointed to the near absence of research in recent years regarding the LDA (e.g. Louzada et al., 2016). 

This contrasts with the use of the logistic regression and AI methods. The popularity of the LR technique 

is particularly surprising, as other statistical techniques are clearly being abandoned in favor of artificial 

intelligence models. As the literature indicates that the logistic regression performs better than other 

statistical methods, namely the discriminant analysis, it is relevant to understand if this is confirmed by 

the results of the credit scoring experiment of this dissertation. Lastly, the study of the procedures used 

in the LR for the selection of input variables was important, as this aspect impacts the regression 

obtained and must be taken into consideration when implementing this model.  

Regarding the ANNs, the comprehension of the underlying structure of these networks is vital to grasp 

the black-box phenomenon. Additionally, this analysis is necessary to the proper definition of several 

parameters during the model development stages (such as the number of layers to be used, partitioning 

of the dataset, possible transfer functions, etc.).  

The research regarding the random forest method allowed for an understanding of how the decision 

trees function and how these may be combined to produce a significantly better model. The study of the 

different types of DTs also permitted a comprehension of several techniques (namely pruning 

procedures) that will aid in the development of the random forest model and the critical analysis to be 

performed of the results obtained. 

Finally, the analysis of previous credit scoring models in the literature stressed the need to differentiate 

between error types. It also became clear that the AUC indicator is the most widely used performance 

metric in research settings. Although some authors have recently brought into question some potential 

shortcomings of this indicator, it remains prevalent in state-of-the-art studies. Additionally, later articles 

pointed out that the rankings produced with the AUC and other popular indicators do not differ 

significantly.  

Therefore, it was concluded that only a small selection of KPIs will suffice for the evaluation of the 

models’ quality and that these former limitations are of limited importance (or may be shared by all major 

performance indicators). Furthermore, by using the AUC, it is possible to compare the models developed 

in this dissertation with others present in the literature. 
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4. Input Data Collection, Analysis and Treatment  

4.1.    Input Data Collection Process 

The data used in the models was obtained from the Orbis financial database. This service is widely used 

by private companies, governments and financial institutions worldwide. Bureau van Dijk (BvD), a 

Moody’s Analytics Company, is responsible for the capture (from regulatory and other sources) and 

treatment of the data present in this database. The company website lists credit risk analysis as one of 

the main purposes for the use of Orbis. The access to the database is provided in exchange for a 

subscription fee, albeit there is a free trial version available online at: https://www.bvdinfo.com/en-

gb/contact-us/free-trial?product=orbis. 

The financial information used in this research was extracted for a list of Galp’s clients and concerns the 

fiscal year of 2016. It was obtained by searching for these companies’ respective BvD ID numbers and 

subsequently selecting the relevant financial and non-financial information. This data was then extracted 

via an Excel file which may be utilized as input in the software packages that are used to develop the 

models. 

Additionally, the information regarding the clients’ financial status (active, insolvent, under special 

revitalization processes or non-compliant) in the FY of 2017 was retrieved from the internal data kept by 

Galp. This last indicator, which corresponds to the dependent variable of the models, was then 

appended to the Excel file exported from Orbis.  

It should be noted that the initial version of the dataset included fewer cases and was extremely 

unbalanced (the active companies vastly outnumbered the ones of the remaining categories). This is 

commonly regarded as a problem in prediction and classification algorithms (Kvamme et al., 2018). The 

performance of predictive models may substantially deteriorate under these circumstances.  

Taking this situation into account, a new dataset was sought that included a higher number of financially 

distressed companies. After obtaining additional cases for this type of business, the respective 

information was also extracted from the Orbis financial database and merged with the previous 

instances to create a larger dataset. By assembling this wider sample, it was then possible to apply a 

sampling procedure to assure its balance. This step is detailed further in this report in section 4.4.2. 

The wider sample displays 6378 instances for 24 financial indicators in addition to the variable for the 

financial status of the companies in 2017. It should be noted that all the data contained in the dataset 

corresponds to information which these corporations must publish in accordance with Portuguese fiscal 

law. These variables are listed and briefly explained with regards to their meaning and computation 

method in the following section. 

 

 

 

https://www.bvdinfo.com/en-gb/contact-us/free-trial?product=orbis
https://www.bvdinfo.com/en-gb/contact-us/free-trial?product=orbis
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¹ ln stands for the natural logarithm 

4.2.    Description of the Input Variables 

In order to obtain the most explanatory input variables, several financial and non-financial indicators 

were gathered from the data exported from the Orbis database. Table 3 details the types of variables 

that were tested, along with the indicators that pertain to each of these categories. 

Table 3 - Categories of explanatory variables tested in the models and corresponding indicators. 

Type of Indicator Variables Units 

 

Raw Financial 

 

 

ln(Total assets)¹ 

 

 

ln(€)¹ 

   

Equity Ratios  Shareholder equity ratio - 

   

 Cash flow variation (2015 – 2016) Percentage 

Growth Trends Total assets variation (2015 – 2016) Percentage 

 Equity variation (2015 – 2016) Percentage 

   

Sector of Activity BvD major sector - 

   

   

Company Maturity Number of years active Years 

   

 

 

 

 

 

Profitability Ratios 

ROE using profit or loss before tax 

ROA using profit or loss before tax 

ROCE using profit or loss before tax 

ROE using net income before tax  

ROA using net income before tax 

ROCE using net income before tax 

Percentage 

Percentage 

Percentage 

Percentage 

Percentage 

Percentage 

 Profit margin Percentage 

 EBITDA margin 

EBIT margin 

Cash flow / Total assets 

Profit per employee 

Percentage 

Percentage 

Percentage 

Thousands of € per employee 

Operational Ratios  
Net assets turnover - 

Credit period Days 

 Liquidity ratio - 

Structural Ratios Current ratio - 

 Gearing 

Debt / EBITDA 

- 

- 
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It should be noted that the units are absent in certain indicators present in Table 3. These cases 

correspond to the financial ratios, which are dimensionless, and the BvD major sector that is a 

categorical variable. 

The raw financials type of variable was among the first tested in the predictive models. This data is 

essentially taken from the companies’ accounting books and presents a very straightforward 

interpretation. However, one must be prudent when drawing conclusions from these indicators. 

Companies with very different risk profiles may present similar metrics (e.g. the same value for net 

income).  

Considering, for example, two companies, one has a slightly better net income, but it is also much larger 

than its counterpart, then the smaller company is a lot more profitable even though it produces a reduced 

net profit. These financials metrics fail to account for the size of the companies. In order to somehow 

mitigate this undesirable size factor, the natural algorithm was used when considering these indicators. 

A logarithmical scale reduces the differences seen between distinct companies in a certain variable, 

while also keeping the original ranking unchanged. Additionally, it may be beneficial not to altogether 

ignore the size of the companies, as this feature may also hold explanatory potential if larger companies 

display reduced chances of default. Indeed, some studies indicate that a company’s size is positively 

related to the provision of trade credit (Andrieu, Staglianò, & van der Zwan, 2018). 

Regarding the equity ratios, these are fundamental to get a perspective of how the companies are 

structured in terms of the capital employed. These are essentially metrics that evaluate how much capital 

corresponds to the companies’ own resources. It is intuitive that a self-funded business has a decreased 

probability of default because there are fewer financial obligations. 

Another issue that may potentially dictate the outcome of a given company is whether there is a clear 

tendency of growth in the past years. A business that has a negative net income but has been able to 

cut its losses significantly in the past, may have an increased probability to reach positive results in the 

following periods. In order to capture this momentum, some indicators for 2015 were also exported from 

the Orbis financial database, allowing for a crude evaluation of any potential growth trends. 

In order to test if companies from different sectors of activity have distinct risk profiles, the variable BvD 

major sector was extracted from the Orbis financial database. This variable groups together companies 

in broad sectors of activity, such as the construction or the transportation sectors. A more detailed 

classification was not possible, as more restrictive categories would severely diminish the number of 

companies per sector, therefore reducing the model’s ability to generalize from this information. 

The maturity of the company was also a factor considered to have explanatory potential regarding the 

companies’ probability of default. Older companies with more experienced and/or determined owners 

may fare better than upstarting businesses. Petersen and Rajan (1997) have found that the age of a 

company may be an important proxy for the respective robustness and the reputation it has among 

potential lenders. Indeed, after partitioning the dataset into good and bad companies, it was observed 

that bad companies are on average almost nine years newer than the good ones.  
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The profitability measures are crucial to understand the financial returns of these companies. A higher 

return on equity, for example, is indicative of a good corporate performance and hence a decreased 

probability of default. Regarding the cash flow type indicators, these are also profitability measures, but 

only consider the net amount of cash and cash-equivalents that is transferred in or out of a company’s 

accounts. 

Operational ratios encompass various indicators conveying information about the way a business is run. 

This category may include variables measuring the turnover rate of the companies’ assets, the average 

time these businesses take to pay the respective debts or even the level of commitment in research and 

development activities. Therefore, this category includes several seemingly disparate indicators that 

relate to the operational aspects of the businesses. 

Lastly, the structure ratios are a vital type of financial indicator used to assess the capability of an entity 

to pay off the current debt obligations with its own resources. This information is very relevant to 

understand how financially robust a company is, which may in turn indicate the probability of default. 

The final indicator, the company status in the following year, corresponds to the dependent variable in 

all the models. In this variable, all companies are assigned to the mutually excluding categories: 

• Active: The company remains in operation in 2017; 

• Insolvent: The company has filed for bankruptcy in 2017; 

• Undergoing a Special Revitalization Process (under Portuguese law, Processo Especial de 

Revitalização - PER): The company has been given a protection against creditors status, which 

allows it to continue operating while limiting creditors requests, which prevents an imminent 

insolvency;  

• Non-compliant: The company has not fulfilled its financial obligations to Galp. 

Although the definitions of active and insolvent companies are straightforward, a clarification on the 

Special Revitalization Process (SRP) and on the non-compliant companies is warranted.  

Portuguese companies that are in a very difficult financial situation with a high probability of default in 

the future may apply for an SRP status. This process is only triggered after a vote by all creditors on 

whether they are in favor or against SRP. It should be noted that the immediate effect of this process is 

a ban on any coercive debt collection. Indeed, the revitalization plan might include debt pardons, 

extended deadlines for the repayments and reductions on the interest rates. In practical terms, this 

process may worsen the creditors’ situation, since it may be just delaying an inevitable insolvency.  

Regarding the last category, companies are considered non-compliant when these entities have failed 

to pay for the products and/or services of Galp as was agreed under the terms of the deal. These cases 

will lead to contentious debt settlements or reimbursements from insurance companies if the amount in 

question was insured.  
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4.3.   Formulas for the Financial Ratios 

Below are listed the formulas necessary to calculate the financial ratios mentioned in the previous 

section. It should be noted that in the cases of companies displaying negative results, the profit before 

tax is substituted by the loss in the computation of these ratios. 

𝑅𝑂𝐸 𝑢𝑠𝑖𝑛𝑔 𝑝𝑟𝑜𝑓𝑖𝑡 𝑏𝑒𝑓𝑜𝑟𝑒 𝑡𝑎𝑥 =  
𝑃𝑟𝑜𝑓𝑖𝑡 𝑏𝑒𝑓𝑜𝑟𝑒 𝑡𝑎𝑥

𝐸𝑞𝑢𝑖𝑡𝑦
× 100 (17) 

𝑅𝑂𝐴 𝑢𝑠𝑖𝑛𝑔 𝑝𝑟𝑜𝑓𝑖𝑡 𝑏𝑒𝑓𝑜𝑟𝑒 𝑡𝑎𝑥 =  
𝑃𝑟𝑜𝑓𝑖𝑡 𝑏𝑒𝑓𝑜𝑟𝑒 𝑡𝑎𝑥

𝑇𝑜𝑡𝑎𝑙 𝑎𝑠𝑠𝑒𝑡𝑠
× 100 (18) 

𝑅𝑂𝐶𝐸 𝑢𝑠𝑖𝑛𝑔 𝑝𝑟𝑜𝑓𝑖𝑡 𝑏𝑒𝑓𝑜𝑟𝑒 𝑡𝑎𝑥 =  
𝑃𝑟𝑜𝑓𝑖𝑡 𝑏𝑒𝑓𝑜𝑟𝑒 𝑡𝑎𝑥

𝐶𝑎𝑝𝑖𝑡𝑎𝑙 𝑒𝑚𝑝𝑙𝑜𝑦𝑒𝑑
× 100 (19) 

𝑅𝑂𝐸 𝑢𝑠𝑖𝑛𝑔 𝑛𝑒𝑡 𝑖𝑛𝑐𝑜𝑚𝑒 =  
𝑁𝑒𝑡 𝑖𝑛𝑐𝑜𝑚𝑒

𝐸𝑞𝑢𝑖𝑡𝑦
× 100 (20) 

𝑅𝑂𝐴 𝑢𝑠𝑖𝑛𝑔 𝑛𝑒𝑡 𝑖𝑛𝑐𝑜𝑚𝑒 =  
𝑁𝑒𝑡 𝑖𝑛𝑐𝑜𝑚𝑒

𝑇𝑜𝑡𝑎𝑙 𝑎𝑠𝑠𝑒𝑡𝑠
× 100 (21) 

𝑅𝑂𝐶𝐸 𝑢𝑠𝑖𝑛𝑔 𝑛𝑒𝑡 𝑖𝑛𝑐𝑜𝑚𝑒 =  
𝑁𝑒𝑡 𝑖𝑛𝑐𝑜𝑚𝑒

𝐶𝑎𝑝𝑖𝑡𝑎𝑙 𝑒𝑚𝑝𝑙𝑜𝑦𝑒𝑑
× 100 (22) 

𝑃𝑟𝑜𝑓𝑖𝑡 𝑚𝑎𝑟𝑔𝑖𝑛 =  
𝑃𝑟𝑜𝑓𝑖𝑡 𝑏𝑒𝑓𝑜𝑟𝑒 𝑡𝑎𝑥

𝑆𝑎𝑙𝑒𝑠
× 100 (23) 

𝐸𝐵𝐼𝑇𝐷𝐴 𝑚𝑎𝑟𝑔𝑖𝑛 =  
𝐸𝐵𝐼𝑇𝐷𝐴

𝑂𝑝𝑒𝑟𝑎𝑡𝑖𝑛𝑔 𝑟𝑒𝑣𝑒𝑛𝑢𝑒
× 100 (24) 

𝐸𝐵𝐼𝑇 𝑚𝑎𝑟𝑔𝑖𝑛 =  
𝐸𝐵𝐼𝑇

𝑂𝑝𝑒𝑟𝑎𝑡𝑖𝑛𝑔 𝑟𝑒𝑣𝑒𝑛𝑢𝑒
× 100 (25) 

𝑃𝑟𝑜𝑓𝑖𝑡 𝑝𝑒𝑟 𝑒𝑚𝑝𝑙𝑜𝑦𝑒𝑒 =  
𝑃𝑟𝑜𝑓𝑖𝑡 𝑏𝑒𝑓𝑜𝑟𝑒 𝑡𝑎𝑥

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑒𝑚𝑝𝑙𝑜𝑦𝑒𝑒𝑠
 (26) 

𝐶𝑟𝑒𝑑𝑖𝑡 𝑝𝑒𝑟𝑖𝑜𝑑 =  
𝐶𝑟𝑒𝑑𝑖𝑡𝑜𝑟𝑠

𝑆𝑎𝑙𝑒𝑠
× 100 (27) 

𝑁𝑒𝑡 𝑎𝑠𝑠𝑒𝑡𝑠 𝑡𝑢𝑟𝑛𝑜𝑣𝑒𝑟 =  
𝑆𝑎𝑙𝑒𝑠

𝐸𝑞𝑢𝑖𝑡𝑦 + 𝑁𝑜𝑛 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑙𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑖𝑒𝑠
 (28) 

𝐶𝑢𝑟𝑟𝑒𝑛𝑡 𝑟𝑎𝑡𝑖𝑜 =  
𝐶𝑢𝑟𝑟𝑒𝑛𝑡 𝑎𝑠𝑠𝑒𝑡𝑠

𝐶𝑢𝑟𝑟𝑒𝑛𝑡 𝑙𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑖𝑒𝑠
 (29) 

𝐿𝑖𝑞𝑢𝑖𝑑𝑖𝑡𝑦 𝑟𝑎𝑡𝑖𝑜 =  
𝐶𝑢𝑟𝑟𝑒𝑛𝑡 𝑎𝑠𝑠𝑒𝑡𝑠 − 𝑆𝑡𝑜𝑐𝑘𝑠

𝐶𝑢𝑟𝑟𝑒𝑛𝑡 𝑙𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑖𝑒𝑠
 (30) 

𝐺𝑒𝑎𝑟𝑖𝑛𝑔 =  
𝑁𝑜𝑛 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑙𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑖𝑒𝑠 − 𝐿𝑜𝑎𝑛𝑠

𝐸𝑞𝑢𝑖𝑡𝑦
 (31) 

𝐷𝑒𝑏𝑡

𝐸𝐵𝐼𝑇𝐷𝐴
=  

𝐿𝑜𝑛𝑔 𝑡𝑒𝑟𝑚 𝑑𝑒𝑏𝑡 + 𝑂𝑡ℎ𝑒𝑟 𝑛𝑜𝑛 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑙𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑖𝑒𝑠 + 𝐿𝑜𝑎𝑛𝑠

𝐸𝐵𝐼𝑇𝐷𝐴
 (32) 

𝐸𝑞𝑢𝑖𝑡𝑦 𝑣𝑎𝑟𝑖𝑎𝑡𝑖𝑜𝑛 =  
𝐸𝑞𝑢𝑖𝑡𝑦(2017) − 𝐸𝑞𝑢𝑖𝑡𝑦(2016)

𝐸𝑞𝑢𝑖𝑡𝑦(2016)
× 100 (33) 
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𝑇𝑜𝑡𝑎𝑙 𝑎𝑠𝑠𝑒𝑡𝑠 𝑣𝑎𝑟𝑖𝑎𝑡𝑖𝑜𝑛 =  
𝑇𝑜𝑡𝑎𝑙 𝑎𝑠𝑠𝑒𝑡𝑠(2017) − 𝑇𝑜𝑡𝑎𝑙 𝑎𝑠𝑠𝑒𝑡𝑠(2016)

𝑇𝑜𝑡𝑎𝑙 𝑎𝑠𝑠𝑒𝑡𝑠(2016)
× 100 (34) 

𝐶𝑎𝑠ℎ 𝑓𝑙𝑜𝑤 𝑣𝑎𝑟𝑖𝑎𝑡𝑖𝑜𝑛 =  
𝐶𝑎𝑠ℎ 𝑓𝑙𝑜𝑤(2017) − 𝐶𝑎𝑠ℎ 𝑓𝑙𝑜𝑤(2016)

𝐶𝑎𝑠ℎ 𝑓𝑙𝑜𝑤(2016)
× 100 (35) 

 

4.4.    Preprocessing of Inputs 

 4.4.1.   Preprocessing of Categorical Attributes 

Some predictive models are not capable of using the categorical variables directly as input. The dataset 

to be used in this research contains two such variables, the BvD major sector and the company status. 

In the case of the company status, this indicator acts as a dependent variable in the models, for which 

reason it is not necessary to code it into a numerical variable.  

In order to code the BvD major sector variable into numerical attributes that may be used as input in all 

the predictor models, there is a need to create auxiliary binary variables that hold this information. Thus, 

a binary variable is created for each possible sector. These assume a value of one when the instances 

belong to the respective sectors and zero otherwise. As such, each binary variable may assume values 

0 or 1, which signal “true” or “false”, respectively, regarding the presence of the specific category that is 

being coded.  

It should be noted that this coding may lead to the removal of certain auxiliary variables from the models. 

Some sectors are poorly represented in the dataset (i.e. display a low number of cases), which may 

prevent them from reaching an appropriate significance level. Therefore, by breaking down the BvD 

major sector into several variables that indicate the presence or absence of each individual sector, a 

group of non-significant sectors may be excluded from the analyses.  

Although the company status variable does not require such numerical coding, it still poses a challenge, 

as it must be decided whether to aggregate the negative categories under broader classes or, instead, 

keep all the categories separate. This is a unique problem of this research because the current literature 

on credit risk prediction uses mostly datasets containing only two options regarding the debtors’ risk 

profile, usually denoting it as “good” or “bad”. This matter must be carefully analyzed in order to discover 

what is more beneficial, keeping two possible outcomes by merging the insolvent, SRP and non-

compliant categories into a single class (as all denote an impossibility to receive the credits conceded 

or at least a serious delay), merging only two of these categories, or having four distinct outcomes by 

keeping all categories separate. These combinations are displayed in Table 4. 

Table 4 - Possible combinations for the aggregating classes “Good” and “Bad”. 

Number of Outcomes Active class Insolvent class SRP class Non-compliant class 

2 Outcomes  Good Bad Bad Bad 

3 Outcomes  Good Bad Bad Non-compliant 

 Good Bad SPR Bad 

 Good Insolvent Bad Bad 

4 Outcomes Good Insolvent SPR Non-compliant 
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Although there are several possible combinations for each distinct strategy, a preliminary analysis is 

enough to understand that some seem counterintuitive. The discriminant analysis, as well as the artificial 

neural networks and other predictive models, offer similar predictions for close inputs, as such, it is 

disadvantageous to merge classes that are characterized by very dissimilar inputs. Therefore, one must 

take this factor into consideration when deciding on the best course of action regarding the aggregation 

of classes. 

Both insolvent and SRP companies display similar very poor financial indicators, as may be confirmed 

in Appendix A. Therefore, this pair of classes is the most logical choice to undergo merging. Non-

compliant companies display better financial indicators in comparison with the other two negative 

categories, although these indicators remain deteriorated in relation to active companies. Consequently, 

the second and third combinations for a 3 outcomes strategy are excluded. 

Upon experimenting with the remaining aggregation strategies, it became evident that it is beneficial to 

keep only two possible outcomes. It is difficult for credit scoring models to differentiate between the 

different categories of financially distressed companies. This is due to the similarity of the inputs 

obtained for insolvent, SPR and non-compliant classes. Furthermore, from the perspective of the entity 

issuing the credit, it is irrelevant to know which of these categories applies to a given applicant. The 

main goal of a creditor is to understand if there is a significant risk of default for any given potential 

debtor, and it is notorious that the applicants included in these three classes present such a risk. 

Considering these factors, it was ultimately decided to pursue the two-outcome aggregation strategy 

that is presented in Table 4.  

4.4.2.   Sampling Procedure 

Regarding the sampling process, there are two key aspects to consider: 

• Sample size: the total number of cases listed in the dataset;  

• Sample balance: proportions of good and bad cases in relation to the total number of instances. 

Although the majority of credit scoring research has not focused on the input samples’ characteristics, 

the size and balance of such datasets have a tremendous potential to affect, for better or worse, the 

performance of the predictive models. Some methods are more sensitive than others to changes in the 

input data’s size and structure, but both statistical and AI techniques are affected by these features to 

varying degrees. 

The standard procedure for sampling credit applicants is to retrieve around 1500 cases of bad 

companies and another 1500 of good companies, with this number of cases being considered sufficient 

(Crone & Finlay, 2012). This means that a perfectly balanced sample of 3000 cases is recommended 

for the construction of robust credit scoring models. 

The dataset extracted from Orbis proved very unbalanced, as is presented in the following table. 
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Table 5 - Original distribution of the cases by the dependent variable's categories. 

Category Number of cases Percentage of total instances 

Active 5372 84,2% 

Insolvent 701 11% 

SPR 265 4,2% 

Non-compliant 40 0,6% 

All categories 6378 100% 

  

There are two options to deal with unbalanced datasets, under-sampling and over-sampling techniques.  

Under-sampling is used to reduce the number of instances in the majority class, while oversampling 

increases the number of cases pertaining to the minority class.  

In this research, it was decided to under-sample the majority class, which encompasses the cases of 

good companies. Although over-sampling may produce better results according to Crone & Finlay 

(2012), this dataset proved extremely unbalanced, which makes it difficult to employ this technique. 

Considering that the minority class is much smaller, the over-sampling would cause certain cases in the 

minority class to be repeated several times. This repetition may, in turn, cause the models to overfit, 

therefore degrading the results. Additionally, while under-sampling the majority class, there is the 

possibility of removal of non-valid instances (due to missing values), which will increase the integrity of 

the sample.  

After selecting a random subset of valid instances from the good companies’ class which displayed a 

total number of cases equal to the one of bad companies, the near perfectly balanced dataset described 

in Table 6 was obtained.  

Table 6 - Distribution of the cases by the dependent variable's categories in the balanced dataset. 

Category Number of cases Percentage of total instances 

Active 1001 50.2% 

Insolvent 701 35.2% 

SPR 265 13.3% 

Non-compliant 27 1.4% 

All categories 1994 100% 

 

The slightly bigger number of active companies in relation to the total instances of negative categories 

is due to a few detected cases of duplicated companies in the data. These occurrences were caused by 

two factors. Firstly, some instances correspond to non-compliant companies that declared insolvency 

or entered an SRP during 2017, therefore being present in both categories. Secondly, some of the active 

companies did not provide payment for products/services, which explains the remaining duplicated 

cases. 
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In order to solve this issue, these cases were attributed to a single category. The active companies that 

did not provide payment were exclusively assigned to the non-compliant class, as it is counterintuitive 

to consider such companies as good clients. The non-compliant companies that also entered an SPR 

or declared insolvency in 2017 were removed from the non-compliant category.  

After this procedure, there is no longer a 1:1 ratio, but the difference is considered irrelevant (the 

proportion is 1.0081 good companies for each bad company).   

4.4.3.   Missing and Invalid Data  

Another important aspect to be addressed by the data preprocessing relates to the presence of missing 

values in the dataset. When building predictive models, there should be an exhaustive search for any 

missing values. After all instances have been identified, one must then investigate the causes of the 

missing data entries.  

The usual reasons for missing values in credit scoring problems are that those values were already 

missing in source data (e.g. the source database) or were out of the theoretical allowed range. The latter 

motive is quite common in these situations due to typos or transcription errors (Angelini et al., 2006). 

On the other hand, these lapses may be due to computational errors (e.g. attempting to compute a ratio 

which has zero as the denominator).  

After analyzing the dataset, two main types of invalid cases were detected, NA and NS instances. The 

first one corresponds to the instances that are truly missing, NA being an acronym for not available in 

the Orbis financial database. In order to understand the meaning of the second term, there was a need 

to contact Galp’s client manager regarding the Orbis services. This query clarified that NS stands for 

not significant and is used in situations where indicators expressed as percentages take values near 

zero.  

As NS instances do not truly represent missing data, these were replaced by null values in the dataset. 

This is an approximation that allows for the use of such instances in the predictive models. Although the 

real values for these indicators might not be exactly zero, there is no way to export this information. 

Therefore, it was deemed beneficial to set them as zero, since there was a significant number of cases 

in this situation that would otherwise be excluded from the analyses. 

There were a few cases detected of instances with invalid values due to divisions by zero. These errors 

were present in financial ratios computed from the data present in Orbis in which the denominator 

corresponded to an indicator with a null value. The reduced number of such instances means that this 

situation does not affect the models significantly, consequently requiring no further treatment or analysis.  

Finally, some instances were detected of public entities in the data. These cases are not relevant for the 

credit scoring exercise, as such organizations are largely different from private companies regarding the 

financial indicators displayed and may not become insolvent even in extreme situations. In order to 

prevent these instances from skewing the results, there was an exhaustive search for all the public 

entities in the dataset. Subsequently, these cases were eliminated from the data. In order to maintain 
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the sample balance, the active companies that were found to be public organizations were replaced by 

an equal number of valid instances belonging to the same category. 

4.4.4.   Correlation Analysis 

The multicollinearity problem refers to the existence of strong correlations between independent 

variables in a dataset. This phenomenon becomes a problem when fitting regression models to the data. 

Many authors have stated before that the logistic model becomes unstable when there exists strong 

dependence among explanatory variables, as it seems that no single variable is important when all the 

others are in the model (e.g. Hosmer & Lemeshow, 1989; Ryan, 1997; Aguilera, Escabias, & 

Valderrama, 2006). This weakness is shared with the linear regression and discriminant analysis 

methods.  

Multicollinearity can cause slope parameter estimates to have magnitudes or signs that are not 

consistent with expectations and, in some situations, lead independent variables in a regression model 

not to demonstrate statistical significance, despite large individual predictor-outcome correlations and a 

large coefficient of determination, R2 (Thompson, Kim, Aloe, & Becker, 2017).  

A common technique to detect multicollinearity issues involves the computation of the variance inflation 

factor (VIF) measure. As specified by Wasserman & Kutner (1983), the VIF may be computed by the 

following expression: 

𝑉𝐼𝐹𝑗 =  
1

1 − 𝑅𝑗
2 

In this formula, 𝑅𝑗
2 is the multiple correlation coefficient, which gives the proportion of variance in 

the independent variable 𝑗 associated with the remaining independent variables (Thompson et al., 

2017).  

There are researchers who consider that values of VIF over 10 are indicative of multicollinearity (e.g. 

Chatterjee & Price, 1991 and Midi & Bagheri, 2010). However, other authors point out that this threshold 

is very lenient. A VIF of 10 implies a 𝑅𝑗
2 equal to 0.9, which is the same as saying that 90% of the 

variability in the independent variable j is explained by the remainder independent variables (Thompson 

et al., 2017). Another typical threshold is a maximum VIF of 5 (Craney & Surles, 2002). This is a more 

conservative approach that was deemed adequate, as certain variables displayed VIF values nearing 

10 and would not be excluded with the former criterium. Table 7 presents the VIF values computed for 

the variables in the original and after removal datasets. 
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Table 7 - VIF values for the original and after removal datasets. 

 

As may be seen in the table above, there are clear signs of multicollinearity in the original data, with 

several VIF values exceeding the threshold defined. In order to solve this problem, the variables were 

removed iteratively until no VIF values were over 5. This removal procedure was performed giving 

preference to the variables that are more correlated (the ones displaying the largest VIF values).  

The final dataset obtained displays no indications of multicollinearity, as may be verified in the rightmost 

column of Table 7. Four variables were removed, and it is interesting to note that these indicators were 

closely related to other variables in the dataset. The ROCE, ROE and ROA using profit or loss were 

related to ROCE, ROE, and ROA using net income, while the EBIT margin depends largely on the 

EBITDA and profit margins. Therefore, it seems logical that the removal of these particular indicators 

will decrease the dependencies between the variables.  

This reasoning is also supported by the correlation matrix obtained for these variables. Table 8 presents 

the highest correlation coefficients detected and the respective pairs of variables. 

Variable VIF (original set) VIF (after removal) 

ROE using profit or loss before tax 9.213 Removed 

ROCE using profit or loss before tax 271.180 Removed 

ROA using profit or loss before tax 38.077 Removed 

ROE using net income before tax 9.223 1.172 

ROCE using net income before tax 269.722 1.329 

ROA using net income before tax 36.189 1.707 

Profit margin 7.320 3.146 

EBITDA margin 4.731 3.183 

EBIT margin 10.439 Removed 

Net assets turnover  1.092 1.080 

Credit period 1.197 1.193 

Current ratio 1.583 1.577 

Liquidity ratio  1.519 1.518 

Debt / EBITDA 1.001 1.001 

Gearing  1.105 1.102 

Cash flow / Total assets 3.239 3.234 

Equity / Total assets 3.058 3.057 

Profit per employee 1.110 1.093 

Equity variation 2015-2016 1.184 1.172 

Total assets variation 2015-2016 1.094 1.093 

Cash flow variation 2015-2016 1.182 1.180 

Number of years active 1.130 1.119 

ln(Total assets) 1.370 1.356 
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Table 8 - Listing of the highest Pearson correlation coefficients. 

Pair of variables Pearson correlation coefficient 

ROCE using profit before tax - ROCE using net income 0.996 

ROA using profit before tax - ROA using net income 0.983 

ROE using profit before tax - ROE using net income 0.963 

EBIT margin - Profit margin 0.914 

 

Furthermore, a strong argument in favor of the multicollinearity analysis performed in this project is the 

absence of such high correlations after the removal of the variables displaying the largest VIF values. 

The correlation matrix for the final selection of variables is presented in Appendix B.  

 4.4.5.   Outlier Analysis 

Although there is no universally accepted definition, several authors refer to outlier instances as 

observations that appear to deviate markedly from other members of the sample in which these occur 

(e.g. Grubbs, 1969; Barnett & Lewis, 1994; Hodge & Austin, 2004).  

Outliers may be the result of errors, fraudulent activity, novelties in the data, among other reasons. It is 

important to address this phenomenon, as outlier instances pose a challenge to the development of the 

predictive models. When fitting a model to the data, outliers need to be identified and eliminated, or, 

alternatively, examined closely if these cases are the focus of the analysis (Beliakov, Kelarev, & 

Yearwood, 2011). In credit scoring, these instances are of limited interest, but the potential to negatively 

affect the results of the models must be eliminated.  

Although some models have a structure that is inherently robust to the presence of extreme values, 

such as decision tree type predictors, other methods, namely regression techniques, are particularly 

susceptible to parameter skewing as a result of using datasets containing outliers. The maximum 

likelihood principle that is frequently used in logistic regressions is not robust against outliers (Beliakov, 

et al., 2011). Moreover, parameters such as the empirical mean and the covariance matrix that are 

frequently used in the classical discriminant rules are highly influenced by outlying observations, which 

will cause these rules to be inappropriate (Hubert & van Driessen, 2004). 

The detection of outliers is simple when dealing with univariate data or even two-dimensional data. In 

these situations, the existence of aberrant data instances can be checked using simple boxplots for 

example. However, when there is a greater number of variables, it is not possible to rely solely on visual 

perception and it becomes necessary to employ an algorithm to detect these instances (Rousseeuw & 

van Zomeren, 1990).  

According to Filzmoser (2004), the basis for multivariate outlier detection is the Mahalanobis distance 

(MD). The MD is an alternative to the Euclidean distance, with both being measures of distance in the 

multivariate space. The key feature of the Mahalanobis distance is that it considers the correlations 

between variables, as well as the respective scales (Brereton & Lloyd, 2016). The MD may be computed 

with following expression: 
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𝑀𝐷 =  √(𝑥𝑖 − �̅�)𝑆−1(𝑥𝑖 − �̅�)𝑇 

This formula uses the following notation: 

𝑥𝑖 – Vector for a given data instance; 

�̅� – Arithmetic mean of the dataset; 

𝑆 – Sample covariance matrix. 

The Mahalanobis distance for a dataset with 𝑛 explanatory variables that display normal distributions 

follows a chi-squared ( 𝜒2) distribution with 𝑛 degrees of freedom. In these cases of multivariate 

normality, a common procedure is to compare the MD with a critical value of the chi-squared distribution. 

The instances with a MD over the value of the 𝜒2 distribution for a given quantile (e.g. 95%) are then 

labeled as outliers.  

However, this procedure suffers from some shortcomings previously identified by certain authors. The 

computation of the MD for a given instance relies on the sample mean, which is not a robust indicator 

in the presence of several outliers. These extreme values may distort the observed mean by moving it 

closer in multivariate space to the outlier points, which may in turn cause two undesirable phenomena. 

First, a small cluster of outliers may impact the mean in such a way that these are no longer detected 

as aberrant instances. Secondly, the distortion brought on by the outliers may be so high that normal 

instances are wrongly labeled as outliers. These occurrences are commonly referred to in the literature 

as masking and swamping, respectively.  

Some studies in various fields of research have proposed alternative procedures for outlier detection 

that seek to minimize the masking and swamping effects. Some examples of these are techniques with 

the computation of Mahalanobis distances (MDs) with robust indicators, such as the method proposed 

by Leys, Klein, Dominicy & Ley (2018) with a minimum covariance determinant approach, or entirely 

distinct approaches using projection pursuit strategies.  

In this research, it was decided to examine the presence of outliers via the computation of the 

Mahalanobis distances with the geometric medians (GMs). This indicator is one of the most common 

robust estimators of centrality in Euclidean spaces (Fletcher, Venkatasubramanian, Joshi, 2008). 

The geometric median (GM) follows an intuitive concept, although its computation presents a reasonable 

challenge. Considering a multivariate sample, the geometric median corresponds to the point that 

minimizes the sum of the Euclidean distances to all the instances present in the dataset. As defined by 

Aftab, Hartley and Trumpf (2015), considering a sample with 𝑘 cases, the GM can be obtained by solving 

the minimization problem found below. 

𝑚 = argmin
𝑥

∑ 𝑑(𝑥, 𝑦𝑖)

𝑘

𝑖=1

 (38) 
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This formula uses the following notation: 

𝑑(𝑥, 𝑦𝑖) – Operator for the Euclidean distance between 𝑥 and 𝑦𝑖 ; 

argmin
𝑥

 – The argument 𝑥 that minimizes the sum of the GMs. 

In order to address this problem, the Weiszfeld algorithm is employed. This method is frequently used 

in the computation of the GM. It is an iterative procedure that with the appropriate initialization values 

converges to the point that presents the lowest sum of Euclidean distances for all the sample instances. 

In accordance with Fritz, Filzmoser and Croux (2012), the Weiszfeld algorithm consists of the iterative 

application of the expression that follows. 

𝑇0(𝑚) =  

∑
𝑦𝑖

‖𝑦𝑖 − 𝑚‖
𝑘
𝑖=1

∑
1

‖𝑦𝑖 − 𝑚‖
𝑘
𝑖=1

 

As long as the estimate  𝑇0 does not coincide with any of the cases present in the sample, this algorithm 

will converge to the geometric median. This condition may be represented mathematically by the 

expression below.  

�̂�𝑙+1 = {
𝑇0(�̂�𝑙) 𝑖𝑓 �̂�𝑙 ∉ {𝑦𝑖 , … , 𝑦𝑘}

�̂�𝑙  𝑖𝑓 �̂�𝑙 ∈ {𝑦𝑖 , … , 𝑦𝑘}
 

The computation of the geometric medians does not tolerate missing or otherwise invalid instances. As 

such, there is a need for a method that replaces these invalid cases by usable data. The techniques 

used for this purpose are called imputation procedures. These may be divided in two categories, single 

and multiple imputation techniques. The fundamental difference between these categories is that the 

first implies the generation of a single estimate for each missing value, while the latter dictates that 

several estimates are produced for each lapse in the data. Taking into consideration that the objective 

of the current analysis is the computation and comparison of the robust Mahalanobis distances, it is 

advantageous to implement a single imputation technique. These techniques are inherently simpler and, 

more importantly, allow for a straightforward comparison of the robust MDs.   

There are several ways to perform a single imputation procedure, however, one must acknowledge that 

some of the more commonly used techniques present fundamental flaws. For example, the mean 

imputation method is perhaps the most frequently utilized procedure and is defined as the replacement 

of the missing/invalid instances using the observed mean for the variable in question. This procedure 

will underestimate the variance, disturb the relations between variables and bias almost any estimate 

(van Buuren, 2018). Thus, this technique is unacceptable in the current problem due to its potential to 

skew the estimates of the robust MDs. 

In order to choose the imputation method that best fits this problem, it is also important to clarify the type 

of missing data that is at hand. Missing data are known to be completely at random (MCAR) when their 
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absence is not related to both observed and unobserved data (Twisk, de Boer, de Vente, & Heymans, 

2013). The data may also be missing at random (MAR), which means that the probability of a particular 

set of values being missing for an instance does not depend on the values themselves, conditional on 

the observed values of other variables (White & Carlin, 2010). Finally, often the most problematic 

situation is when the data is missing not at random (MNAR). In this case, the probability of a certain 

value being absent depends on the missing value itself (Dong & Peng, 2013). 

SPSS offers several options in terms of both single and multiple imputation procedures. By defining the 

number of imputations as one in the multiple imputation techniques, it is also possible to use these 

methods for the generation of a single estimate for each missing/invalid value. This is beneficial as a 

sole stochastic regression imputation may be superior to the deterministic single imputation procedures 

available. A certain degree of variability in the estimates is vital, as deterministic methods lead to the 

underestimation of the data’s variance. Nevertheless, the generation of multiple estimates for each lapse 

in the data would be preferable to further reduce the biasing of the variance towards zero, but this is not 

compatible with the goal of directly comparing the robust MDs. Thus, it was decided to use one of the 

stochastic multiple imputation procedures available in SPSS to compute the single estimates.    

This category of imputation methods has two options, fully conditional specification, which is an iterative 

Markov chain Monte Carlo (MCMC) technique, and a monotone procedure. The SPSS software is 

capable of automatically choosing one of these procedures in accordance with the pattern of missing 

values observed. Assuming an incomplete rectangular data table, the dataset is said to be monotone if 

any variable is either at least or at most as observed as any other variable (Liu, 1995). As the scan of 

the dataset indicates that it is non-monotone, SPSS automatically selects the MCMC method, as this 

technique does not assume any specific missing data pattern. 

Most multiple imputation procedures, including fully conditional specification, generally assume that the 

data is MAR or MCAR (Liu & De, 2015). In order to understand which type of missing data is displayed 

in the credit scoring dataset, Little’s MCAR test was performed. Assuming the null hypothesis is that the 

data is missing completely at random, then a p-value inferior to 0.05 is interpreted as indicating that the 

data is not MCAR. As the output of this test is a significance value of 0.00, the null hypothesis is rejected. 

Considering this result, it may be concluded with a high degree of certainty that the data is not MCAR. 

This is also coherent with what was perceived from the data so far. For example, bad companies display 

a much higher percentage of missing/invalid instances than the remaining corporations. This would not 

happen if the probability of a certain value being missing was independent of the observed values of the 

other indicators. However, it is still necessary to understand if the data displays a MAR or MNAR pattern.  

The distinction between MAR and MNAR is based on a non-testable assumption (Harel & Zhou, 2007). 

Therefore, the only option to distinguish between these patterns of missing data is to seek an 

explanation for this phenomenon. Upon enquiring an Orbis representative about the causes behind the 

missing data, it was discovered that these lapses are most likely due to situations in which the 

companies fail to disclose their full financial information. This tends to occur in cases of businesses that, 

although are undergoing insolvency proceedings or entering special revitalization processes, remain in 



44 
 
  

operation in the period in question. As there is no indication that the lapses are due to the missing values 

themselves, the data is assumed to be MAR, which allows for the application of multiple imputation 

procedures. 

After separating the sample into two groups, dataset A and dataset B, which contain exclusively good 

and bad companies, respectively, it was possible to impute the values using the fully conditional 

specification method. Since the whole sample contains two distinct populations with very different 

characteristics, this splitting procedure is fundamental to assure that the MD is computed with the GMs 

of the class (good or bad) to which each instance belongs. The geometric medians obtained are detailed 

in the following table. 

Table 9 - Geometric medians for the two classes of companies. 

Independent Variable GM for the good 

companies 

GM for the bad 

companies 

ROE using net income 5.0842 -11.9968 

ROCE using net income 5.1136 -12.6036 

ROA using net income 2.5344 -11.8482 

Profit margin 3.4549 -11.2633 

EBITDA margin 9.5170 -6.0160 

Net assets turnover 2.1344 2.4427 

Credit period 40.9809 102.3660 

Current ratio 3.7691 1.9431 

Debt / EBITDA 3.1521 -0.4057 

Liquidity ratio 3.3115 1.4996 

Gearing 0.6767 0.3353 

ln(Total assets) 13.0830 13.2194 

Cash flow / Total assets 7.1446 -0.3541 

Number of years active 23.5109 22.1655 

Equity variation (2015-2016) 0.0705 -1.1444 

Total assets variation (2015-2016) 0.0532 0.1114 

Shareholder equity ratio 0.5173 -1.4001 

Profit per employee 3.3685 -7.8761 

Cash flow variation (2015-2016) 0.0470 -0.0507 

 

As can be observed by comparing the results displayed in Table 9 with the average values for each 

indicator presented in Appendix A, there are significant differences. This was expected due to the non-

robust nature of the arithmetic mean in the presence of outliers. 

The next step was to perform normality tests in SPSS for the explanatory variables. These tests 

demonstrated, with a high degree of certainty, that several indicators do not follow normal distributions. 

Consequently, it was decided to use an alternative exclusion criterion to the comparison of the MDs with 
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a quantile of chi-squared distribution, as there is no guarantee that the Mahalanobis distances follow 

this particular distribution in the absence of multivariate normality. By constructing scatter plots with the 

sample identification numbers and the robust MDs, it is possible, via visual inspection, to detect any 

potential outliers. 

Regarding the good companies, as can be perceived by analyzing the scatter plot in Figure 14, there 

are a couple of instances that stand out for being anomalous. These are marked in red for easier 

identification. Company 126 presents a robust MD nearing 6000, a much higher value than those of the 

remaining corporations. Additionally, company 1 also stands out with a robust MD of almost 1500. These 

are the only instances that present robust Mahalanobis distances over the 1000 mark. As such, these 

companies are flagged as potential outliers. 

As for the bad companies, the scatter plot in Figure 15 allows for the identification of the outliers in this 

subset, which are also marked in red. In comparison with the good companies, this group presents a 

much more erratic distribution of the robust MDs. In order to isolate the most aberrant instances, all 

companies with robust Mahalanobis distances over 1000 were flagged as potential outliers.  

 

Figure 14 - Scatter plot of the robust MDs for the good companies. 
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Figure 15 - Scatter plot of the robust MDs for the bad companies. 

In order to comprehend to what extent these flagged instances are aberrant, there was an analysis of 

the indicators presented by these companies. This study reinforced the idea that such companies 

display altered values for several indicators.  

Considering that the results of the robust MDs analysis were confirmed in both datasets A and B by the 

subsequent findings of extreme values for several indicators in the flagged cases, the decision was 

taken to label these nine instances as outliers and remove them from the sample.  

It should be noted that the outlier detection procedure implemented in this project is partially based on 

the work of Semechko (2019). Further details are provided in the reference section. 

4.5.   Chapter Conclusions 

This chapter allowed for a detailed description of the sample to be used as input in the credit scoring 

models. It described how the companies were selected from the portfolio of Galp’s B2B clients and the 

procedure of extracting the financial information from the Orbis financial database. The various financial 

indicators considered in this research are meant to allow for different aspects of these companies to be 

captured in the models. These variables reflect different characteristics, such as the profitability of the 

companies, the financial autonomy of these businesses, operational metrics, sector of activity, among 

others. 

As for the pre-processing of the data, this procedure was fundamental to treat the input and assure that 

the models can reach better results. Regarding the sampling of the instances, a balanced dataset was 

sought in accordance with what is recommended in credit scoring settings. This was done by under-

sampling the majority class, which also allowed for the removal of non-valid instances. In terms of the 
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categorical variables, a method was established to assure their conversion into numerical attributes that 

could be used in all the models. 

There was also an exhaustive search for any instances with missing or otherwise invalid values. After 

detecting these cases, there was an effort to replace these values with valid entries or, in certain 

situations, remove them from the dataset entirely.  

A correlation analysis was performed to assess any multicollinearity issues in the data. After detecting 

these dependencies among variables, the most affected indicators were removed from the dataset. The 

correlation analysis is particularly important to the logistic regression, which would be severely impacted 

if this issue was not addressed before its implementation.  

Finally, there was an investigation into whether the data contained outliers. These extreme cases can 

severely impact the results of the statistical models. In order to tackle this issue, an analysis with the 

computation of robust Mahalanobis distances was performed. As it was necessary to consider all the 

cases in this procedure, even the ones with incomplete information, there was an imputation technique 

in place to fill in any missing data. This study led to the identification of 9 potential outliers. As these 

instances were confirmed to display aberrant values for several indicators, it was decided to exclude 

them from the dataset. 
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5. Model Development 

5.1.    Discriminant Analysis 

The discriminant analysis model was applied to the data with IBM SPSS Statistics 25.  

This software offers various stepwise techniques for the selection of inputs, more specifically: 

• Method 1 (Wilks' lambda): Selection is based on how much each variable lowers the overall 

Wilks' lambda; 

• Method 2 (unexplained variance): The variables are entered in order to minimize the sum of the 

unexplained variation between groups; 

• Method 3 (Mahalanobis distance): The variables are entered in order to boost the MD between 

groups; 

• Method 4 (lowest F ratio): Selection is done in order to maximize an F ratio computed from the 

Mahalanobis distance between groups; 

• Method 5 (Rao's V): At each step, the variable that maximizes the increase in Rao's V is entered. 

Additionally, the conditions that may be applied in each method for the entry and removal of variables 

are the following: 

• F value thresholds: Variables are inserted in the model if the corresponding F values are over 

a given entry threshold and removed if the F value falls below a certain minimum. 

• Probability of F thresholds: Variables enter the model if the significance levels of the respective 

F values are under a defined minimum and removed if the significance levels exceed a 

maximum cutoff value.  

Considering the capabilities of the software, alternative discriminant analysis models were computed 

using the different combinations of stepwise techniques and entry/removal criteria. Regarding the 

maximum and minimum thresholds used in the selection of variables, it was decided to use the default 

settings of SPSS for the F value method and custom limits for the probability of F method. This decision 

was taken after observing that by using the default settings in both methods, the results produced were 

ultimately the same. Therefore, the thresholds for the probability of F method were set manually to be 

more conservative than the pre-defined values of SPSS. These thresholds are specified in Table 10. 

Table 10 - Thresholds for the entry and removal of variables in the models. 

Method Entry Removal 

F value 3.00 1.00 

Probability of F 0.05 0.10 

After applying the different discriminant analyses, several key performance indicators were calculated 

in order to facilitate a robust comparison of the models. These results are displayed in Table 11.  
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Table 11 - KPIs obtained for the different combinations of stepwise methods and entry/removal criteria. 

Stepwise method Entry/removal criteria PCC (%) Sensitivity (%) Specificity (%) 

Method 1 
F value 80.0 88.9 67.7 

Probability of F 79.8 88.9 67.1 

Method 2 
F value 80.0 88.9 67.7 

Probability of F 79.8 88.9 67.1 

Method 3 
F value 80.0 88.9 67.7 

Probability of F 79.8 88.9 67.1 

Method 4 
F value 80.0 88.9 67.7 

Probability of F 79.8 88.9 67.1 

Method 5 
F value 80.0 88.9 67.7 

Probability of F 79.8 88.9 67.1 

By observing the values for the different KPIs, one can conclude that the best results are achieved by 

the methods with the F value thresholds. However, it is also notorious that the stepwise technique used 

does not impact the performance metrics. This situation arises because, for each entry/removal criteria, 

all the stepwise methods have selected the same indicators to be used as inputs. Considering these 

results, it was decided to apply the stepwise techniques using the F value rules, which led to the 

determination of the indicators with the most predictive potential. This selection of indicators is presented 

in Table 12, along with the unstandardized and standardized canonical coefficients. 

Table 12 - Independent variables selected and corresponding coefficients. 
 

Independent  

variables 

Unstandardized 

coefficients 

Standardized 

coefficients 

ROE using net income 0.002 0.125 

ROCE using net income 0.003 0.188 

ROA using net income 0.024 0.379 

Profit margin 0.010 0.182 

EBITDA margin 0.008 0.168 

Credit period -0.003 -0.316 

Current ratio 0.014 0.094 

ln(Total assets) -0.116 -0.186 

Cash flow / Total assets -0.690 -0.391 

Food, beverages and tobacco sector 0.440 0.101 

Hotels and restaurants sector 0.311 0.082 

Post and telecommunications sector -2.993 -0.085 

Primary sector 0.769 0.182 

Textiles, wearing apparel and leather sector -1.040 -0.225 

Transport sector 0.581 0.176 

Number of years active 0.006 0.085 

Shareholder equity ratio 0.005 0.730 

Constant 1.590 - 

 



51 
 
  

(41) 

 

(4) 

 

(4) 

 

(4) 

The standardized coefficients are important to assess the discriminating ability of the explanatory 

variables. The standardization allows for the comparison of variables expressed in distinct scales. 

Positive and negative values are indicative of the direction of change in the LDA model’s output when 

the variables increase. The five variables with the most predictive potential are thus, the shareholder 

equity ratio, Cash flow / Total assets, ROA using net income, credit period and the textiles sector binary 

variable, by descending order of discriminating ability. On the other hand, the unstandardized canonical 

coefficients may be used for the direct calculation of the discriminant function, which corresponds to the 

expression below: 

In this formula, the following coding is considered: 

• 𝑋- Input data vector; 

• 𝑥1- ROE using net income; 

• 𝑥2- ROCE using net income; 

• 𝑥3- ROA using net income; 

• 𝑥4- Profit margin;  

• 𝑥5- EBITDA margin; 

• 𝑥6- Credit period;  

• 𝑥7- Current ratio;  

• 𝑥8- ln(Total assets);  

• 𝑥9- Cash flow / Total assets; 

• 𝑥10- Food, beverages and tobacco sector;  

• 𝑥11- Hotels and restaurants sector;  

• 𝑥12- Post and telecommunications sector;  

• 𝑥13- Primary sector;  

• 𝑥14- Textiles, wearing apparel and leather sector;  

• 𝑥15- Transport sector;  

• 𝑥16- Number of years active;  

• 𝑥17- Shareholder equity ratio.  

This expression may be used to calculate the discriminant scores for each instance in the data, which 

are indicative of the predicted group membership. The average scores for good and bad companies are 

0.658 and -1.090, respectively. If a given instance obtains a discriminant score that is close to the score 

of a group centroid, then it probably belongs to that group. However, the prediction always depends on 

a cutoff value that is previously defined which segregates the classes. 
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Based on these scores, it is possible to plot a receiver operating characteristic curve that studies the 

model's performance for the range of possible cutoff values. Subsequently, it is also possible to compute 

the AUC and Gini index. The ROC curve plotted in Figure 16 yields an AUC of 0.863, which corresponds 

approximately to a Gini index of 0.726. These KPIs are utilized in the latter performance comparison 

between the different credit scoring models. 

5.2.    Logistic Regression 

The binary logistic regression model was applied to the data with the IBM SPSS Statistics 25 software. 

There is no need to apply a multinomial logistic regression, as the considered output of the model is 

dichotomous.  

The first step in the development of this model is picking the input variable selection procedure. As 

described in IBM’s documentation for SPSS, this software has six options regarding these methods: 

• Method 1: Entry testing based on the significance of the score statistic and removal dependent 

on the probability of a likelihood-ratio statistic based on conditional parameter estimates; 

• Method 2: Entry testing based on the significance of the score statistic and removal dependent 

on the probability of a likelihood-ratio statistic based on maximum partial likelihood estimates; 

• Method 3: Entry testing based on the significance of the score statistic and removal dependent 

on the probability of the Wald statistic; 

• Method 4: Backward elimination with removal dependent on the probability of the likelihood-

ratio statistic based on conditional parameter estimates; 

• Method 5: Backward elimination with removal dependent on the probability of the likelihood-

ratio statistic based on the maximum partial likelihood estimates; 

• Method 6: Backward elimination with removal dependent on the probability of the Wald statistic. 

Figure 16 - ROC curve for the LDA model. 
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Additionally, there is also the option to manually enter the input variables desired, regardless of the 

respective contribution to the LR model. After experimenting with all the selection procedures above, it 

was concluded that the best results were obtained with the forward selection techniques (methods 1, 2 

and 3). The variables chosen by these techniques to be included as inputs of the LR were the same, 

which ultimately led to identical regression models. It should be noted that the comparison between 

selection procedures was done by considering only the sensitivity, specificity and overall PCC. In this 

stage, the AUC and Gini index were not readily available in SPSS.  

The maximum number of iterations before model termination was kept at 20, the default setting in SPSS, 

as overriding this configuration did not improve the results. In terms of the thresholds used in the 

stepwise methods, the best results were obtained when the probability for the score statistic must be 

less than 0.01 for entry and over 0.03 for removal. The option to include a constant in the LR model 

remained selected. Furthermore, the SPSS user interface allows for the definition of the classification 

cutoff directly, which was kept at 0.5. Although it is relevant to study the model’s performance under 

different thresholds, this is addressed later with the computation of the remaining KPIs. 

Table 13 displays the output obtained for the best logistic regression model, which achieved a 

percentage of correctly classified cases of 89.9%, a sensitivity of 93.8% and a specificity of 83.5%. From 

left to right, the first column contains the variables selected as input, the second displays the coefficients 

for the regression and the third presents the statistical significance of each variable. Additionally, the 

exponentials of the coefficients B are also included, as well as the respective 95% confidence intervals.  

Table 13 - Logistic regression model obtained with methods 1, 2 and 3. 

    95% CI for exp(B) 

 B Sig. exp(B) Lower Upper 

Cash flow / Total assets 0.120 0.000 1.128 1.101 1.156 

Shareholder equity ratio 0.072 0.000 1.075 1.064 1.085 

Textiles sector -1.873 0.000 0.154 0.060 0.393 

Total assets variation 
(2015-2016) 

0.003 0.002 1.003 1.001 1.004 

ROA using net income -0.068 0.000 0.934 0.907 0.963 

ln(Total Assets) -0.216 0.001 0.806 0.710 0.914 

Constant 1.452 0.110 4.271 - - 

 

The statistical significance is used in the context of hypothesis testing. The null hypothesis for each 

variable is that the respective coefficient is zero. When the significance is under a certain p-value defined 

beforehand (usually 0.05), then it can be assumed that the coefficient is not zero with a high degree of 

certainty. All variables included in the LR are statistically significant, even when considering a more 

conservative p-value of 0.01. This is a strong argument in favor of the predictive power of the indicators 

used.  

In terms of the coefficients themselves, it is more intuitive to interpret the respective exponentials, which 

are odds ratios. One can interpret these values as a measure of the effect that an increase of one unit 
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(42) 

 

(4) 

 

(4) 

 

(4) 

in the independent value would have on the probability of predicting that a case corresponds to a good 

company. This reasoning is valid assuming that the other independent variables remain unchanged. 

Values above zero denote that this event has become more likely (e.g. if exp(B) is equal to 2, then it is 

twice as likely that a given case corresponds to a good company), on the other hand, if the value is less 

than one, then it becomes less likely (e.g. if exp(B) is equal to 0.5, then the probability that the company 

is good is halved). 

Analyzing the values for exp(B) in Table 13, it can be verified that most variables behave in the way it 

was expected. The Cash flow / Total assets ratio shows an odds ratio that is quite high in comparison 

with the others, indicating that a company with only a slight increase in this indicator is much likelier to 

be a good company. This reflects the inherent superior predictive power of this variable.   

The shareholder equity ratio and the variation of the total assets also display odds ratios above one, 

which is an intuitive result. The companies that are self-financed will have less debt, thus being at a 

reduced risk of default. Additionally, an increase in the total assets of a company may be a consequence 

of business growth, which is beneficial to its finances. 

On the other hand, the binary variable for the textiles, wearing apparel and leather sector, which signals 

if a company belongs to this particular sector, presents an odds ratio near zero. This is coherent with 

the histogram presented in Appendix C. Looking across the different categories in this graph, the 

sampled companies in this specific sector are predominantly bad. Although discrepancies like this are 

present in other sectors, the textiles, wearing apparel and leather sector was better represented in the 

sample. This justifies the inclusion of this variable, as a high number of cases is necessary to reach 

statistical significance in the model. 

As for the other variables, the values displayed for the exponentials of the coefficients are more difficult 

to interpret. Both the ROA using net income and the logarithm of the total assets display odds ratios 

below one. Larger values for these variables should be indicative of more robust companies. The ROA 

measures profitability and it was hypothesized that the logarithm of the assets would account for a 

decreased risk of insolvency in bigger companies. However, these results do not necessarily contradict 

these assumptions. This simplistic interpretation of the odds ratios only remains valid if the values of the 

different input variables included in the logistic regression are truly independent of each other. For 

instance, the ROA is not independent of the Cash flow / Total assets. These dependencies could not be 

completely eliminated in the multicollinearity analysis and jeopardize the interpretation of the results for 

these particular variables. 

The output of the final logistic regression model may then be computed with the following expression: 

𝐿𝑅(𝑋) =  
1

1 + 𝑒−1.452+0.068𝑥1+0.216𝑥2−0.120𝑥3−0.072𝑥4+1.873𝑥5−0.003𝑥6
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This formula considers the following notation: 

• 𝑋- Input data vector; 

• 𝑥1- ROA using net income; 

• 𝑥2- ln(Total assets); 

• 𝑥3- Cash flow / Total assets;  

• 𝑥4- Shareholder equity ratio; 

• 𝑥5- Textiles sector;  

• 𝑥6- Total assets variation (2015-2016). 

The SPSS software does not allow for the direct calculation of the AUC and Gini Index for logistic 

regression models. Consequently, the results of the LR were saved as a new variable in the worksheet 

and a receiver operating curve was later generated with this information. Figure 17 displays the ROC 

curve in blue, along with the reference diagonal in red. The value obtained for the area under the curve 

was 0.926, which corresponds approximately to a Gini index of 0.852. 

 

5.3.    MLP Artificial Neural Network 

The MLP model was applied in the neural networks’ module of SPSS Statistics 25. This software offers 

the user various options regarding the way the ANNs are structured and the methods through which the 

results are computed. 

First, the partitioning of the sample may be set. This involves specifying the fraction of instances that is 

allocated to the training, validation and testing datasets. Secondly, the structure of the MLP network 

Figure 17 - ROC curve for the output of the logistic regression model. 
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may be stipulated in terms of the number of hidden layers, the activation function to be used in these 

layers and the transfer function of the output layer. Finally, there are different options for the learning 

algorithm to be employed in the networks’ development. Considering these possibilities, four different 

MLP neural networks are proposed. The characteristics of these ANNs are presented in Table 14. 

Table 14 - Features of the MLP networks tested. 

Classifiers MLP 1 MLP 2 MLP 3 MLP 4 

Number of hidden 

layers 
1 2 1 2 

Number of units per 

hidden layer 

Set 

automatically 

Set 

automatically 

Set 

automatically 

Set  

automatically 

Activation function 

for the hidden layers 
Sigmoid Sigmoid 

Hyperbolic 

tangent 

Hyperbolic 

tangent 

Activation function 

for the output layer 

Identity 

function 
Identity function Identity function Identity function 

Training algorithm  

Scaled 

conjugate 

gradient 

Scaled 

conjugate 

gradient 

Scaled 

conjugate 

gradient 

Scaled 

conjugate 

gradient 

 

As the process of developing these models and calculating the respective key performance indicators 

is computationally demanding, it was opted to restrict the number of MLP models to be tested to four. 

The implementation of the ANNs is dependent on a time-consuming iterative procedure that is detailed 

further in this section. Consequently, by considering additional architectures in this phase, there would 

be a sharp increase in the number of runs needed to evaluate all the alternatives. Nevertheless, the 

settings of the four MLP models tested were established to ensure, within the limitations present, a 

diversity of architectures and parameters.  

Regarding the partitioning of the data, several combinations were selected, also in accordance with the 

best practices in the literature. The first combination corresponds to a training-testing-validation ratio of 

700:300:0. This is the default setting in SPSS and the most popular partition, being used by numerous 

authors (e.g. Angelini et al., 2008 and Pacelli & Azzollini, 2010). The second option uses a training-

testing-validation ratio of 600:150:250 and is used by Lai et al., 2006. Lastly, the third partitioning, which 

varies only slightly in relation to the second alternative, corresponds to a ratio of 600:200:200 and is 

based on the work of Addo et. al, 2018.  

For the comparison between methods to be fair, one must be careful when setting the partitioning 

strategy in SPSS. The percentage of cases that are attributed to each set may be defined directly in the 

software’s user interface for a given network. However, this introduces the potential for chance to 

influence the results. As the cases are randomly sampled from the dataset to build the training, testing 

and validation sets, the results obtained will be strongly influenced by this arbitrary selection. By not 

guaranteeing the replicability of the partition, the comparison between results cannot yield meaningful 

results.  
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This issue essentially arises because some companies are more difficult to classify than others. Not all 

instances present overwhelmingly positive or negative indicators. These cases are the ones that 

contribute the most to the errors committed by the models. If a given partition randomly samples more 

of these instances than the others, then the models would tend to display poorer results, but this does 

not mean that the partitioning strategy is inferior to the others. The same reasoning applies to 

comparisons between different models that use the same partitioning strategy. A given model may 

perform better solely because it was evaluated with a test set containing instances that are easier to 

sort.  

In order to overcome this flaw, a strategy is employed that mitigates the potential for the models’ results 

to be influenced by chance. First, three partitioning variables are defined beforehand. These variables 

contain values that determine the placement of each instance. Positive, null and negative values 

attribute the cases to the training, testing and validation sets, respectively. The variables’ values are 

generated in accordance with the partitioning strategy desired and used for the testing of all the MLP 

models for that given strategy. This assures that the networks are comparable if the results were 

obtained for the same partitioning option, as these models are generated with similar initial conditions.  

However, when comparing networks that used different partitioning strategies, which correspond to 

different auxiliary partitioning variables, there is still the potential for chance to affect the analysis. 

Therefore, it was deemed necessary to do multiple runs of the algorithm that generates these variables 

and then compute the average values for the KPIs.  

The pseudo-code for the algorithms utilized in the generation of the partitioning variables is presented 

in Appendix D. Additionally, the KPIs obtained for each specific iteration and partitioning scheme are 

listed in Appendix E. By averaging out all the performance metrics across the iterations (according to 

the MLP model and partitioning option considered in each iteration), it was possible to compute the 

results that are presented in the following table.  

Table 15 - Average values of the KPIs after 5 runs for each combination of MLP model and partition. 

Partitioning ANN model PCC (%) Sensitivity (%) Specificity (%) AUC Gini Index 

700:300:0 

MLP 1 88.10 93.68 79.32 0.9404 0.8808 

MLP 2 88.14 93.44 79.92 0.9422 0.8844 

MLP 3 88.32 94.08 79.28 0.9492 0.8984 

MLP 4 89.12 93.74 81.74 0.9508 0.9016 

600:150:250 

MLP 1 88.02 91.86 81.22 0.9468 0.8936 

MLP 2 88.04 91.98 81.10 0.9392 0.8784 

MLP 3 89.74 93.28 83.28 0.9570 0.9140 

MLP 4 90.74 94.54 84.04 0.9586 0.9172 

600:200:200 

MLP 1 89.02 93.88 81.00 0.9462 0.8924 

MLP 2 88.52 93.38 80.38 0.9374 0.8748 

MLP 3 89.44 94.44 81.08 0.9496 0.8992 

MLP 4 90.20 94.42 83.14 0.9544 0.9088 
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Analyzing the values of the KPIs displayed in Table 15, which are all relative to the testing set, it can be 

understood how each MLP network performs for all the partitioning strategies considered. After 

comparing the models, it was considered that the best network is MLP 4 trained with 60% of instances 

in the training set, 15% in the testing set and the remaining 25% in the validation set. The diagram 

depicting this network is presented in Appendix F. 

This ANN displays the best value for the area under the ROC curve, as well as the greatest Gini index. 

The AUC and Gini index are given priority over the remaining metrics in this evaluation and all the 

subsequent testing of AI models. Ling, Huang and Zhang (2003) have shown that the AUC is statistically 

consistent and more discriminating than a simple accuracy measure, thus being better at evaluating the 

performance of learning algorithms. Nevertheless, in the specific case of MLP 4 under the second 

partitioning scheme, this option remarkably outperforms the alternative architectures in all the remainder 

metrics considered. 

SPSS also has the option to perform a sensitivity analysis to compute the importance of each 

independent variable in the MLP artificial neural networks. These estimates are computed by assessing 

how much the network’s prediction value variates in response to changes in the explanatory variables. 

This procedure is based on the training and testing sets and outputs a chart containing simple and 

normalized importance estimates. After selecting this option for MLP 4 under the second partitioning 

scheme, the graph displayed in Figure 18 was obtained.     

 

 

 

 

 

 

 

 

 

 

 

Analyzing these results, it becomes evident that the equity of the companies is highly influential on the 

respective outcomes. The most important indicator is the shareholder equity ratio, a measure of financial 

autonomy, while the fourth most predictive variable is the variation observed in the companies’ equity 

from 2015 to 2016. Additionally, the profitability indicators, such as Cash flow / Total assets and the 

profit per employee, are also very important to this credit scoring model. 

Figure 18 - Importance estimates of the explanatory variables for the MLP model. 
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5.4.    Radial Basis Function Artificial Neural Network 

The radial basis function ANN model was also applied in the neural networks’ module of SPSS Statistics 

25. In the same way as the MLP models, there is the option to directly define the percentages that are 

assigned to the training, validation and testing sets. Additionally, there are two alternatives for the 

activation function used in the hidden layers, which are ordinary and normalized radial basis functions.  

The remaining customizable settings are the number of elements in the hidden layers and the overlap 

among hidden units. The overlapping factor is a multiplier applied to the width of the radial basis 

functions.  

As SPSS offers algorithms that define the optimal number of units in the hidden layers and the best 

values for the overlapping factors, these features were not set manually. Thus, the software 

automatically defined the most advantageous architecture regarding these characteristics. Considering 

that there is no mechanism in place to select the transfer function in the hidden layers that achieves the 

best results, two alternative RBF networks are studied that differ solely in this aspect. These are detailed 

in Table 16. 

Table 16 - Features of the RBF networks tested. 

RBF network RBF 1 RBF 2 

Number of elements in the 

hidden layers 

Set automatically Set automatically 

Overlapping factor Set automatically Set automatically 

Activation function for the 

hidden layers 

Normalized RBF  Ordinary RBF 

The partitioning schemes used in the MLP networks are also employed in the development of the RBF 

models. Additionally, similarly to what was done in the previous section to mitigate the variability in the 

results caused by the random sampling procedure used to build the various sets, three partitioning 

variables are computed and used iteratively to build the networks and collect the KPIs. The results for 

these performance metrics are found in the table below. 

Table 17 - Average values of the KPIs after 5 runs for each combination of RBF model and partition. 

Partitioning ANN model PCC (%) Sensitivity (%) Specificity (%) AUC Gini Index 

700:300:0  
RBF 1 83.54 87.36 77.68 0.8918 0.7836 

RBF 2 81.64 88.02 72.00 0.8842 0.7684 

600:150:250 
RBF 1 81.02 84.54 75.12 0.8888 0.7776 

RBF 2 81.28 86.76 72.02 0.8924 0.7848 

600:200:200 
RBF 1 81.88 84.84 76.94 0.8900 0.7800 

RBF 2 82.38 85.94 76.22 0.8910 0.7820 

The AUC and Gini Index remain the most robust metrics for the evaluation of these models and are thus 

prioritized over the others, similarly to what was done in the previous section. Considering this, it may 

be concluded from the results displayed in Table 17 that RBF model 2 under the second partitioning 

option (60% Training, 15% Testing and 25% Validation) outperforms the remaining alternatives.  
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5.5.    Random Forest 

The random forest method was applied in MATLAB R2018b. This model can be obtained by using the 

TreeBagger function available in this software, which builds an ensemble of bootstrapped decision trees 

for either classification or regression purposes. Additionally, TreeBagger selects a random subset of 

explanatory variables to use at each decision split as is described by Breiman (2001) in the original 

random forest algorithm. The code used in MATLAB to generate and analyze the random forest is 

presented in Appendix G. 

In order to build the RF model, the dataset is imported into MATLAB as a table type object. The 

dependent variable is imported subsequently as a column vector, which allows for it to be used as a 

separate argument in the function. This data allows for the construction of the model, which is set for 

classification purposes, as the outcome considered is categorical.  

The surrogate splits option is activated to handle cases of missing data. In situations with a missing 

value for the best split, this technique calculates to what extent alternative splits resemble the best split 

in terms of the cases that are sent down each path in the decision trees (Feelders, 2000). Afterward, 

the most similar split is used, instead of the original optimal partition. 

Additionally, the optional arguments 'OOBPredictorImportance' and 'OOBPrediction' were included in 

the function to allow for the assessment of the variables’ explanatory power and the computation of the 

predicted class probabilities, respectively. The probabilities are especially important, as these are used 

in the latter plotting of the ROC curve.   

The TreeBagger function offers two possibilities for the algorithm that selects the best split predictor at 

each node, curvature and interaction-curvature tests. A curvature test selects the split predictor that 

minimizes the p-value of chi-square tests of independence between each explanatory variable and the 

dependent variable (Loh & Shih, 1997). An interaction-curvature algorithm chooses the split predictor 

that minimizes the p-value of chi-square tests of independence between each explanatory variable and 

the output, while also minimizing the p-value of a chi-square test of independence between each pair of 

independent variables and the dependent variable (Loh, 2002). 

In order to understand which of these algorithms provides the best results, two distinct random forest 

models are applied differing in the splitting techniques. The relevant KPIs obtained for both models are 

displayed in the following table. 

Table 18 - KPIs for the different splitting algorithm options. 

RF splitting algorithm PCC (%) Sensitivity (%) Specificity (%) AUC Gini Index 

Curvature test 96.46 98.59 94.32 0.997 0.994 

Interaction-curvature test 96.61 98.49 94.73 0.996 0.992 

The random forest using the curvature tests provided the best predictions in terms of AUC, Gini Index 

and sensitivity. Although the percentage of correctly classified cases is slightly inferior to the one 

presented by the model trained with the interaction-curvature tests, a higher AUC is prioritized. 
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A critical parameter that must be defined prior to the implementation of these models is the number of 

decision trees contained in the ensembles. The results displayed so far were obtained with models 

composed of 50 decision trees. However, it must be analyzed if there are gains to be had by adding 

more trees or, on the other hand, there is an excess of DTs that does not translate into a reduction of 

the prediction error and increases the computation time unnecessarily. In order to do this, the out-of-

bag prediction error is plotted for a variable number of decision trees in the graph below. 

 

Analyzing Figure 19, one can observe that, when the total number of grown trees is small, there is a 

rapid decrease of the out-of-bag prediction error with additional DTs in the ensemble. However, these 

gains in accuracy are progressively smaller, which causes the out-of-bag prediction error to stabilize 

around an ensemble of 50 trees. The error rate observed for a RF containing 50 decision trees is 0.1314, 

whereas an ensemble of 60 DTs displays a rate of 0.1299. As this reduction is hardly significant, it was 

opted to keep the number of decision trees at 50.  

Using the data stored in 'OOBPredictorImportance', one can obtain the importance estimates for the 

explanatory variables. Analyzing these results, it is relevant to point out that the variable with the most 

explanatory power is the shareholder equity ratio, which displays a remarkable score in comparison with 

the other indicators. The credit period and the Cash flow / Total assets indicators display the second 

and third highest importance estimates, respectively. Certain measures, namely the profit per employee 

and gearing, are also important to the results of the model. Other variables, such as the major sector of 

activity, some temporal trends and company maturity, prove to be reasonably exploratory of the 

companies’ risk profiles, but to a lesser degree than the ones that were previously mentioned. 

 

 

Figure 19 - Out-of-bag prediction error obtained for a variable number of decision trees. 
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5.6.    Chapter Conclusions 

In this chapter, several models were tested for each of the credit scoring methods considered. 

Subsequently, the best ones were selected to represent the respective techniques in the latter 

benchmarking.  

The statistical models were implemented in SPSS 25. The first predictor to be employed was the 

discriminant analysis. Numerous stepwise methods were applied in the selection of inputs. Additionally, 

the parameters used as thresholds for the entry and removal of variables were tuned to increase the 

diversity of the models and thus increase the chances of finding a good alternative. Secondly, the logistic 

regression model was applied to the data. As before, various stepwise techniques were tested along 

with different thresholds. In this case, it was opted to use the default settings for the limits conditioning 

the entry and removal of indicators, as these produced the best results. 

The artificial neural networks were also implemented in SPSS 25. Several architectures were tried out 

for the multilayer perceptron and radial basis function models. These alternative models differed in the 

number of hidden layers, the activation functions and the learning algorithms employed. Besides the 

distinct structures, three separate partitioning schemes were considered. Additional measures were 

taken to mitigate the detrimental effects of random sampling procedures. These consisted in the use of 

partitioning variables and iterative techniques for the computation of the relevant KPIs. 

Finally, the random forest model was developed using MATLAB R2018b. The function TreeBagger that 

is available in this software package allows for the construction of ensembles of bootstrapped decision 

trees that follow the RF algorithm. As the data still contains various instances with missing data, the 

surrogate splits option was activated to handle such cases. In terms of the settings tested, two different 

splitting procedures were applied, curvature and interaction-curvature tests. Most importantly, there was 

also an analysis of the out-of-bag prediction error for a range of possible numbers of decision trees to 

be included in the random forest. It was concluded that this error stabilized around an ensemble of 50 

trees. 
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6. Comparing AI and statistical methods 

6.1.    Development Process 

Considering the results presented in the previous sections, several observations may be made about 

the final AI and statistical models obtained. Firstly, it is relevant to point out that the indicators that were 

chosen as the most explicative in the variable selection processes are largely the same across all the 

models. For instance, most of the variables designated to be used as inputs in the logistic regression 

are also the ones displaying the highest predictive power in the linear discriminant analysis. 

Furthermore, these same variables are also among the most predictive indicators of the MLP artificial 

neural network and random forest methods. This uniformity is a strong argument in favor of the selection 

procedures in place, demonstrating that the following variables are the most predictive of the companies’ 

outcomes: 

• Shareholder equity ratio; 

• Cash flow / Total assets; 

• Credit period; 

• ROA using net income; 

• BvD major sector; 

• Gearing. 

All the variables above were found to be highly indicative of the companies’ risk profiles in at least two 

distinct credit scoring methods. Nevertheless, the remaining indicators were still relevant for credit risk 

analysis purposes, although not to the extent of the previously mentioned ones. It is also noteworthy 

that the shareholder equity ratio was the most important independent variable in the majority of the 

models implemented. 

The statistical methods proved more difficult to implement overall, as some of the limitations of these 

models warranted additional pre-processing procedures. The vulnerability to the presence of outliers 

and the potential impact of multicollinearity had to be addressed before proceeding with the development 

of these models, as skipping these steps would risk undermining the respective performances. 

Nevertheless, the AI methods were more demanding in other aspects, namely in terms of defining the 

parameters necessary for the learning processes and the experimentation of different architectures. 

 

6.2.    Benchmarking the models 

By compiling the results obtained so far in terms of the relevant KPIs, it is now possible to compare the 

credit scoring approaches. For each category of predictive methods, the best model in the 

developmental stage is considered for benchmarking purposes. Table 19 exhibits the values for the 

performance metrics, as well as a ranking (from best to worst performing) based on the AUC and Gini 

Index displayed. This pair of KPIs is again prioritized over the remaining measures, as these 

demonstrate increased robustness to potential distortions brought on by sample imbalances that could 

not be addressed in the sampling process.  
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Table 19 - KPIs for all the credit scoring models implemented. 

Model PCC (%) Sensitivity (%) Specificity (%) AUC Gini Index Rank 

Discriminant analysis 80.00 88.90 67.70 0.8630 0.7260 5 

Logistic regression 89.90 93.80 83.50 0.9260 0.8520 3 

MLP neural network 90.74 94.54 84.04 0.9586 0.9172 2 

RBF neural network 81.28 86.76 72.02 0.8924 0.7848 4 

Random forest 96.46 98.59 94.32 0.9970 0.9940 1 

 

Analyzing Table 19, it can be observed that the random forest model is ranked as the best credit scoring 

model, displaying the highest AUC and Gini Index, while also presenting a remarkable overall accuracy. 

Over 95% of all instances are assigned correct predictions, with 98.59% of all future good companies 

being classified as such. In second place, the MLP neural network displayed robust KPIs, although not 

up to par with the ones obtained with the random forest. On the other hand, the RBF neural network 

was the overall worst AI model considered, being even outranked by the logistic regression model. 

Regarding the statistical methods, the results fall in line with what was observed in other benchmarking 

studies. The discriminant analysis proved to be the least predictive model of all the credit scoring 

methods tested, which may be a result of the violation of this models’ assumptions in terms of normality 

and mutual independence regarding the explanatory variables. The logistic regression is ranked as the 

third best predictor, behind the MLP neural network and the random forest. This model provides accurate 

predictions in almost 90% of the cases and demonstrates good sensitivity and specificity, which translate 

into low rates of type I and type II errors. Despite this, the LR model fell short on the more robust KPIs, 

namely the AUC and Gini Index, which caused it to be ranked behind some of the AI models.    

Considering these results, it can be concluded that the MLP neural network and the random forest 

outperformed the statistical approaches in the credit scoring experiment. However, the logistic 

regression proved to be a quality predictor, displaying a high level of accuracy and presenting values 

for other performance measures that come close to the results of the AI alternatives. This is coherent 

with the recent rise in popularity of the LR method, which is a solid compromise in terms of prediction 

performance and ease of implementation. Furthermore, the logistic regression also permits an intuitive 

interpretation of the model’s parameters, overcoming the black-box syndrome of AI predictors.  
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7. Conclusions and Further Work  

7.1.    Further Work 

In order to delineate the direction of further research based on this work, it is important to state some 

issues that could be addressed to reach new findings and further enrich the academic literature on credit 

scoring.  

Regarding the pre-processing of the input dataset, several measures were taken to assure the quality 

of the data, which necessarily impacts the performance of the predictive models. However, posterior 

studies may adopt distinct methodological approaches to address some limitations of the current 

research. Specifically, the detection of the multivariate outliers could be improved in terms of the rule 

utilized in the labeling of these instances.  

As the variables in the input data failed the normality tests, it was not possible to proceed with the typical 

criterium of labeling as outliers any observations with robust Mahalanobis distances beyond a given 

quantile of the chi-squared distribution. The detection of the multivariate outliers relied then upon the 

visual examination of the scatterplots with the robust MDs for each observation in the dataset. 

Consequently, the labeling process lacked objectivity. Therefore, it would be beneficial to develop a 

more sophisticated outlier labeling rule that is applicable to multivariate non-normal data.  

Additionally, there could be an effort to procure additional cases to include in the dataset. The number 

of instances in the sample was constrained by the limited observations of bad companies and the 

necessity to preserve class balance. This could be achieved by searching for new cases of non-

compliant businesses, insolvencies and special revitalization processes. As the current research 

considered only company outcomes for the year of 2016, it would be advantageous to study the 

possibility to include observations for other years. This was done to a limited extent to validate some of 

the predictors, but such instances were never included during the development of the credit scoring 

models. 

Further research could also attempt to mitigate the detrimental effects of the missing values in the 

dataset. Some of the predictor methods applied in this study simply discard such cases, which reduces 

the size of the sample utilized. In order to deal with this situation in the context of the computation of the 

robust MDs, an imputation procedure was put in place based on a Markov chain Monte Carlo technique. 

However, the imputed dataset could not be used in the development of some of the models, which 

limited the applicability of this sample to the pre-processing stage of this project. Thus, additional studies 

could attempt to employ multiple imputation procedures that are compatible with the implementation of 

the credit scoring methods.  

7.2.   Conclusions 

Credit risk remains one of the biggest risks for financial institutions and corporations alike. The methods 

utilized in this field have increased in sophistication considerably throughout the years. Nevertheless, 

any improvements in the accuracy rates of the current models are extremely important, as even small 
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advances can mean significant savings for creditors by preventing defaults. This served as the main 

motivation for the current study. 

This research allowed for the comparison of statistical and AI predictors, adding significantly to the 

academic literature by designing a credit scoring experiment using a novel dataset with financial and 

other relevant data for a selection of Portuguese companies. Credit scoring methods were successfully 

implemented based on this information and used to distinguish between good and bad applicants in the 

timespan of a year. The statistical methods considered were the discriminant analysis and logistic 

regression. As for the artificial intelligence models, this study focused on the MLP and RBF artificial 

neural networks and the random forest method. 

As the statistical predictors are particularly susceptible to multicollinearity in the data and to the presence 

of outlier instances, there was a thorough pre-processing of the dataset prior to the implementation of 

the models. This procedure included a correlation analysis to remove certain indicators that displayed 

high VIF values, which corresponded necessarily to the ones displaying the highest dependencies upon 

the remaining independent variables. Regarding the outlier issue, there was a detection technique in 

place based on robust Mahalanobis distances that allowed for the identification of certain aberrant 

instances in the multivariate space. Additionally, a proper sampling technique was defined in order to 

build a balanced dataset, as the base data was extremely unbalanced. However, this issue could not 

be fully addressed due to the missing instances being more prevalent in a class than in the other. 

After the careful preparation of the dataset, it was possible to implement the credit scoring methods 

mentioned above. In order to obtain the best performing models in each category of predictors, several 

alternatives were employed and subsequently compared. The performance evaluation was based on 

numerous metrics, which included the percentage of correctly classified instances, sensitivity, 

specificity, the area under the ROC curve and the Gini Index. The diversity of the statistical models was 

ensured by experimenting with several distinct stepwise techniques and thresholds for the entry and 

removal of variables. Regarding the artificial intelligence methods, numerous architectures were tested 

by manually setting some of the structural parameters. 

Following the selection of the best models for each category of credit scoring methods, it was possible 

to compare the KPIs of the statistical and AI alternatives. The benchmarking study completed found that 

the artificial intelligence methods outperformed the more conventional statistical approaches. The 

random forest model demonstrated the most potential, followed by the MLP neural network. The RBF 

neural network and the logistic regression were considered to be the fourth and third most adequate 

models respectively, whereas the discriminant analysis was the worst-performing model overall.  

Regarding the statistical approaches, the results are coherent with the findings of previously published 

benchmarking research articles. The discriminant analysis is dependent on strict assumptions in terms 

of normality and mutual independence regarding the input variables, which was a contributing factor to 

its disuse among credit risk professionals and may explain the poor performance obtained in this 

experiment. The logistic regression proved to be a quality predictor, displaying a high level of accuracy 

and presenting values for other performance measures that come close to the results of the AI 
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alternatives. This is consistent with the recent rise in popularity of the LR method, which demonstrated 

to be a solid compromise in terms of prediction performance and ease of implementation.  

The random forest models, along with the MLP artificial neural networks, display tremendous potential 

in the credit scoring field. In contrast with the statistical techniques, these methods can model hidden 

non-linear relationships between the explanatory variables and the dependent variable, being also more 

robust to multicollinearity and to the presence of outliers. Besides these advantages, these methods do 

not make assumptions regarding the probability distributions of the input data. These factors may have 

contributed to the observed superiority of the AI approaches. The major drawback of these alternatives 

continues to be the black-box syndrome, which makes the interpretation of the results almost impossible. 

This may restrict the use of such models in certain settings due to regulatory requirements. 
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Appendices 

Appendix A – Descriptive statistics and instance counts for the sample. 

  

Mean Std. Deviation Valid Instances Count 

Good Bad Good Bad Good Bad 

ROE using net income before tax 2.03 -23.44 42.20 97.35 988 940 

ROCE using net income before tax 4.39 -21.89 50.13 87.76 988 735 

ROA using net income before tax 1.97 -11.99 11.35 23.06 988 952 

Profit margin 3.18 -12.33 16.11 25.57 988 883 

EBITDA margin 9.89 -8.00 18.23 28.23 988 886 

Net assets turnover 2.22 3.09 4.01 11.86 988 884 

Credit period 59.51 137.86 87.83 174.42 987 883 

Current ratio 4.30 1.90 7.98 5.75 988 984 

Debt / EBITDA 3.21 -398.60 17.05 7215.87 815 699 

Liquidity ratio 4.44 3.70 21.45 63.68 988 973 

Gearing 0.69 1.80 2.22 39.08 984 962 

ln(Total assets) 13.19 12.81 1.34 2.28 988 984 

Cash Flow / Total Assets 6.00 -59.49 14.00 240.99 988 949 

Number of years active 24.21 21.22 13.93 15.01 988 989 

Equity variation 2015-2016 4.31 56.06 50.69 4574.67 988 933 

Total assets variation 2015-2016 4.72 68.78 37.31 1602.15 988 931 

Shareholder equity ratio 48.62 -4.86 30.15 6510.26 988 984 

Profit per employee 6.94 -8.64 49.30 25.17 934 753 

Cash Flow variation 15-16 -36.46 420.41 1735.07 15650.14 972 863 
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Mean Std. Deviation Valid Instances Count 

Active Insolvent SPR 
Non-

compliant Active Insolvent SPR 
Non-

compliant Active Insolvent SPR 
Non-

compliant 

ROE using net income before tax 2.03 -22.27 -27.46 -5.40 42.20 99.82 93.18 43.36 988 663 262 15 

ROCE using net income before tax 4.39 -27.54 -11.09 -5.42 50.13 100.35 55.05 19.68 988 488 231 16 

ROA using net income before tax 1.97 -12.73 -10.21 -11.00 11.35 24.06 20.14 24.33 988 663 262 27 

Profit margin 3.18 -12.56 -12.46 -3.82 16.11 26.17 24.72 14.85 988 611 252 20 

EBITDA margin 9.89 -8.36 -7.82 0.18 18.23 28.61 27.39 27.05 988 612 252 22 

Net assets turnover 2.22 3.32 2.26 6.49 4.01 11.91 11.37 15.73 988 612 252 20 

Credit period 59.51 131.46 150.61 169.13 87.83 176.49 164.47 219.87 987 609 252 22 

Current ratio 4.30 1.93 1.80 2.13 7.98 6.42 3.52 5.58 988 692 265 27 

Debt / EBITDA 3.21 -214.57 -755.05 - 17.05 3197.80 11545.95 - 815 461 238 0 

Liquidity ratio 4.44 4.78 1.11 1.93 21.45 76.03 1.74 5.60 988 682 264 27 

Gearing 0.69 1.29 0.09 32.41 2.22 17.50 40.41 179.87 984 673 263 26 

ln(Total assets) 13.19 12.23 14.25 13.41 1.34 2.17 1.88 2.06 988 692 265 27 

Cash Flow / Total Assets 6.00 -79.00 -17.28 -0.08 14.00 282.00 92.23 26.00 988 660 262 27 

Number of years active 24.21 19.92 24.72 20.41 13.93 14.30 16.40 13.653 988 697 265 27 

Equity variation 2015-2016 4.31 -61.87 353.33 - 50.69 3054.78 7083.81 - 988 668 265 0 

Total assets variation 2015-2016 4.72 98.35 -5.53 - 37.31 1893.71 37.15 - 988 666 265 0 

Shareholder equity ratio 48.62 -671.51 -47.24 -38.72 30.15 7756.66 167.94 168.66 988 692 265 27 

Profit per employee 6.94 -8.00 -10.83 -3.73 49.30 22.47 31.97 8.69 934 523 206 24 

Cash Flow variation 15-16 -36.46 -91.45 1751.94 -708.41 1735.07 6269.47 27504.37 4547.75 972 590 248 25 
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* Correlation is significant at the 0.05 level (two tailed). 

** Correlation is significant at the 0.01 level (two tailed). 

 

 

Appendix B – Correlation matrix for the dataset after the multicollinearity analysis. 
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Appendix C – Histograms for the explanatory variables (discriminated by class). 

The following histograms detail the distributions of the observed values for each potential explanatory 

variable. The plots are divided into two parts. The distributions of the values for the good companies are 

displayed on the left and the ones for the bad companies on the right. In order to facilitate the 

interpretation of the graphs, the width of each column corresponds to half of the intervals seen in the 

vertical axes.  The minimum and maximum values displayed in the axes were adjusted to provide a 

better view of the data. Consequently, some univariate extreme instances may not be represented.   

These plots were generated for a balanced sample. However, there are lapses in the data which affect 

the instances of bad companies to a greater degree than the other ones. This may lead to different total 

counts of good and bad companies in the same plot. It is advised not to compare absolute values 

between categories due to these discrepancies.  

Figure 21 - Histograms of the ROCE using net income for good and bad companies. 

Figure 20 - Histograms of the ROE using net income for good and bad companies. 
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Figure 22 - Histograms of the ROA using net income for good and bad companies. 

Figure 23 - Histograms of the EBITDA margin for good and bad companies. 

 

Figure 21 - Histograms for the values of the liquidity ratio for good and bad companies.Figure 22 - 
Histograms for the values of the EBITDA margin for good and bad companies. 

 

Figure 23 - Histograms for the values of the liquidity ratio for good and bad companies.Figure 24 - 
Histograms for the values of the EBITDA margin for good and bad companies. 

 

Figure 25 - Histograms for the values of the liquidity ratio for good and bad companies.Figure 26 - 
Histograms for the values of the EBITDA margin for good and bad companies. 

Figure 24 - Histograms of the liquidity ratio for good and bad companies. 
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Figure 25 - Histograms of the current ratio for good and bad companies. 

Figure 26 - Histograms of Debt / EBITDA for good and bad companies. 

Figure 27 - Histograms of the profit margin for good and bad companies. 
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Figure 30 - Histograms of the gearing values for good and bad companies. 

 

 

 

Figure 28 - Histograms of the net assets turnover for good and bad companies. 

 

Figure 27 - Histograms for the Cash flow / Total assets for good and bad companies.Figure 28 - Histograms for 
the values of the net assets turnover for good and bad companies. 

Figure 29 - Histograms of the credit period for good and bad companies. 

 

Figure 29 - Histograms for the values of the net assets turnover for good and bad companies.Figure 30 
- Histograms for the values of the credit period for good and bad companies. 
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Figure 33 - Histograms of the number of years active for good and bad companies. 

 

 

 

Figure 31 - Histograms of the natural logarithm of total assets for good and bad companies. 

 

Figure 31 - Histograms for the BvD major sector for good and bad companies.Figure 32 - Histograms for the 
values of the natural logarithm of the total assets for good and bad companies. 

Figure 32 - Histograms of the Cash flow / Total assets for good and bad companies. 

 

Figure 33 - Histograms for the number of years active for good and bad companies.Figure 34 - Histograms for the 
Cash flow / Total assets for good and bad companies. 

 

Figure 35 - Histograms for the number of years active for good and bad companies.Figure 36 - Histograms for the 
Cash flow / Total assets for good and bad companies. 

 

Figure 37 - Histograms for the number of years active for good and bad companies.Figure 38 - Histograms for the 
Cash flow / Total assets for good and bad companies. 
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Figure 34 - Histograms of the BvD major sector for good and bad companies. 
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Appendix D – Pseudo-code for the partitioning algorithms. 

 

Algorithm 1 (70% Training - 30% Testing - 0% Validation): 

 𝑖 = 1; 

 while 𝑖 ≤ total number of instances in the sample {  

   Generate a random integer n between 1 and 10; 

    if n ≤ 7 then 𝑥𝑖= 1; 

    else 𝑥𝑖= 0; 

   𝑖 = 𝑖 + 1; 

  } 

 

Algorithm 2 (60% Training - 15% Testing - 25% Validation): 

  𝑖 = 1; 

  while 𝑖 ≤ total number of instances in the sample {  

   Generate a random integer n between 1 and 20; 

    if n ≤ 12 then 𝑥𝑖= 1; 

    if 12 < n ≤ 15 then 𝑥𝑖= 0; 

    else 𝑥𝑖= -1; 

   𝑖 = 𝑖 + 1; 

  } 

 

Algorithm 3 ( 60% Training - 20% Testing - 20% Validation): 

  𝑖 = 1;  

  while 𝑖 ≤ total number of instances in the sample {  

   Generate a random integer n between 1 and 10; 

    if n ≤ 6 then 𝑥𝑖= 1; 

    if 6 < n ≤ 8 then 𝑥𝑖= 0; 

    else 𝑥𝑖= -1; 

   𝑖 = 𝑖 + 1; 

  }  
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Appendix E – Results for all the iterations of the partitioning algorithm. 

   PCC (%) Sens. (%) Spec. (%) AUC Gini Index 

Iteration 1 

Partition 1 

MLP1 87.2 93.5 77.8 0.937 0.874 

MLP2 86.6 92.6 77.8 0.934 0.868 

MLP3 85.5 93.5 73.6 0.946 0.892 

MLP4 88 90.7 84 0.954 0.908 

Partition 2 

MLP1 91.1 92.2 89.1 0.956 0.912 

MLP2 89.9 92.2 85.9 0.945 0.89 

MLP3 90.5 92.2 87.5 0.956 0.912 

MLP4 92.7 95.7 87.5 0.958 0.916 

Partition 3 

MLP1 89.3 93.5 82.5 0.938 0.876 

MLP2 86.7 91.1 79.6 0.932 0.864 

MLP3 88.6 92.3 82.5 0.94 0.88 

MLP4 88.2 92.9 80.6 0.954 0.908 

 

   PCC (%) Sens. (%) Spec. (%) AUC Gini Index 

Iteration 2 

Partition 1 

MLP1 89.3 92.4 83.9 0.945 0.89 

MLP2 88.5 91.1 83.9 0.947 0.894 

MLP3 91.4 94.1 86.9 0.954 0.908 

MLP4 89.6 94.1 81.8 0.952 0.904 

Partition 2 

MLP1 87.8 89 86.1 0.955 0.91 

MLP2 88.8 89 88.6 0.961 0.922 

MLP3 89.3 88.1 91.1 0.968 0.936 

MLP4 90.4 92.4 87.3 0.954 0.908 

Partition 3 

MLP1 85.5 94.5 71.6 0.941 0.882 

MLP2 87.1 96.6 72.6 0.937 0.874 

MLP3 88 95.2 76.8 0.948 0.896 

MLP4 88 94.5 77.9 0.953 0.906 

 

   PCC (%) Sens. (%) Spec. (%) AUC Gini Index 

Iteration 3 

Partition 1 

MLP1 87.3 92.9 78.4 0.938 0.876 

MLP2 88.4 92 82.7 0.948 0.896 

MLP3 88.2 94.6 77.7 0.95 0.9 

MLP4 89 92.9 82.7 0.946 0.892 

Partition 2 

MLP1 87.7 93.2 77.8 0.934 0.868 

MLP2 86.3 94.7 70.8 0.891 0.782 

MLP3 92.2 96.2 84.7 0.961 0.922 

MLP4 91.2 95.5 83.3 0.96 0.92 

Partition 3 

MLP1 88.8 94 80.2 0.958 0.916 

MLP2 88.8 93.3 81.3 0.948 0.896 

MLP3 89.6 96.6 78 0.963 0.926 

MLP4 91.7 97.3 82.4 0.96 0.92 
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   PCC (%) Sens. (%) Spec. (%) AUC Gini Index 

Iteration 4 

Partition 1 

MLP1 86.4 93.9 74 0.941 0.882 

MLP2 87.5 95.3 74.8 0.937 0.874 

MLP3 87 93 77.1 0.947 0.894 

MLP4 87.8 95.3 75.6 0.955 0.91 

Partition 2 

MLP1 84 89.2 76.3 0.949 0.898 

MLP2 84.5 90 76.3 0.945 0.89 

MLP3 86 92.5 76.3 0.948 0.896 

MLP4 87.5 92.5 80 0.953 0.906 

Partition 3 

MLP1 86.9 91 79.8 0.94 0.88 

MLP2 87.8 91 82 0.933 0.866 

MLP3 86.9 91.7 78.7 0.943 0.886 

MLP4 89 91 85.4 0.955 0.91 

 

   PCC (%) Sens. (%) Spec. (%) AUC Gini Index 

Iteration 5 

Partition 1 

MLP1 90.3 95.7 82.5 0.941 0.882 

MLP2 89.7 96.2 80.4 0.945 0.89 

MLP3 89.5 95.2 81.1 0.949 0.898 

MLP4 91.2 95.7 84.6 0.947 0.894 

Partition 2 

MLP1 89.5 95.7 76.8 0.94 0.88 

MLP2 90.7 94 83.9 0.954 0.908 

MLP3 90.7 97.4 76.8 0.952 0.904 

MLP4 91.9 96.6 82.1 0.968 0.936 

Partition 3 

MLP1 94.6 96.4 90.9 0.954 0.908 

MLP2 92.2 94.9 86.4 0.937 0.874 

MLP3 94.1 96.4 89.4 0.954 0.908 

MLP4 94.1 96.4 89.4 0.95 0.9 

 

   PCC (%) Sens. (%) Spec. (%) AUC Gini Index 

Iteration 1 

Partition 1 
RBF1 87.50 89.40 84.60 0.893 0.786 

RBF2 84.60 95.70 68.50 0.883 0.766 

Partition 2 
RBF1 82.40 85.80 77.10 0.879 0.758 

RBF2 86.90 93.40 77.10 0.902 0.804 

Partition 3 
RBF1 84.00 85.50 81.60 0.895 0.79 

RBF2 82.90 85.50 78.60 0.891 0.782 
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   PCC (%) Sens. (%) Spec. (%) AUC Gini Index 

Iteration 2 

Partition 1 
RBF1 86.00 91.70 76.40 0.895 0.79 

RBF2 85.50 90.10 77.70 0.89 0.78 

Partition 2 
RBF1 77.10 83.00 66.70 0.887 0.774 

RBF2 76.50 84.00 63.30 0.889 0.778 

Partition 3 
RBF1 83.70 90.50 73.20 0.888 0.776 

RBF2 83.70 86.50 79.40 0.889 0.778 

 

   PCC (%) Sens. (%) Spec. (%) AUC Gini Index 

Iteration 3 

Partition 1 
RBF1 83.10 86.10 78.40 0.892 0.784 

RBF2 78.90 84.80 69.90 0.864 0.728 

Partition 2 
RBF1 80.00 82.50 76.50 0.891 0.782 

RBF2 80.00 85.10 72.80 0.889 0.778 

Partition 3 
RBF1 82.50 83.00 81.60 0.893 0.786 

RBF2 82.90 87.90 74.70 0.896 0.792 

 

   PCC (%) Sens. (%) Spec. (%) AUC Gini Index 

Iteration 4 

Partition 1 
RBF1 82.40 81.00 84.80 0.894 0.788 

RBF2 81.60 83.10 79.00 0.896 0.792 

Partition 2 
RBF1 84.60 85.90 81.70 0.893 0.786 

RBF2 82.60 86.70 73.30 0.889 0.778 

Partition 3 
RBF1 80.40 83.40 74.40 0.89 0.78 

RBF2 81.50 87.40 70.00 0.889 0.778 

 

   PCC (%) Sens. (%) Spec. (%) AUC Gini Index 

Iteration 5 

Partition 1 
RBF1 78.70 88.60 64.20 0.885 0.77 

RBF2 77.60 86.40 64.90 0.888 0.776 

Partition 2 
RBF1 81.00 85.50 73.60 0.894 0.788 

RBF2 80.40 84.60 73.60 0.893 0.786 

Partition 3 
RBF1 78.80 81.80 73.90 0.884 0.768 

RBF2 80.90 82.40 78.40 0.89 0.78 
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Appendix F – Diagram for the MLP artificial neural network. 
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Appendix G – MATLAB script for the generation and analysis of the random forest model. 

s = rng % Saves the current state of the random stream, ensuring the 

reproducibility of the results 

forest = TreeBagger(50, Dataset, 'Company_Status', 'PredictorSelection', 

'curvature', 'OOBPrediction', 'On', 'OOBPredictorImportance', 'On', 'Surrogate', 

'On', 'Method', 'classification') % Generates 50 bagged trees using the columns of 

Dataset as the independent variables to predict Company_Status. Defines curvature 

tests as the splitting method. Uses surrogate splits to deal with missing values.  

figure; % Creates a new figure window with default settings 

oobErrorBaggedEnsemble = oobError(forest); % Calculates the out-of-bag 

classification error by testing instances in each tree that were not used in the 

training process 

plot(oobErrorBaggedEnsemble) % Plots the error of the ensemble of trees 

xlabel 'Number of trees'; % Names the x axis as the number of grown trees 

ylabel 'Out-of-bag classification error'; % Names the y axis as the out-of-bag 

classification error 

 

importance = forest.OOBPermutedPredictorDeltaError; % Stores the importance 

estimates in a vector called importance 

figure; % Creates a new figure window with default settings 

bar(importance); 

title('Curvature Test'); % Names the plot 

ylabel('Predictor importance estimates'); % Names the vertical axis 

xlabel('Predictors'); % Names the horizontal axis 

h = gca; 

h.XTickLabel = forest.PredictorNames; % Selects the names of the independent 

variables to include in as labels in the horizontal axis 

h.XTickLabelRotation = 60; % Sets the inclination of the labels in the horizontal 

axis 

h.TickLabelInterpreter = 'none'; 

 

[yfit, sfit] = oobPredict(forest) % Stores the class probabilities in sfit 

Probability_of_being1 = sfit(:,end) % Extracts the last column of sfit, which 

contains the probability of each instance belonging to the good companies class 

(coded as 1) that the RF computes 

[X, Y, T, AUC] = perfcurve(Company_Status, Probability_of_being1, '1') % Calculates 

the AUC from the Probability_of_being1 


